22 research outputs found

    Forging the path to precision medicine in Qatar: a public health perspective on pharmacogenomics initiatives

    Get PDF
    Pharmacogenomics (PGx) is an important component of precision medicine that promises tailored treatment approaches based on an individual’s genetic information. Exploring the initiatives in research that help to integrate PGx test into clinical setting, identifying the potential barriers and challenges as well as planning the future directions, are all important for fruitful PGx implementation in any population. Qatar serves as an exemplar case study for the Middle East, having a small native population compared to a diverse immigrant population, advanced healthcare system, national genome program, and several educational initiatives on PGx and precision medicine. This paper attempts to outline the current state of PGx research and implementation in Qatar within the global context, emphasizing ongoing initiatives and educational efforts. The inclusion of PGx in university curricula and healthcare provider training, alongside precision medicine conferences, showcase Qatar’s commitment to advancing this field. However, challenges persist, including the requirement for population specific implementation strategies, complex genetic data interpretation, lack of standardization, and limited awareness. The review suggests policy development for future directions in continued research investment, conducting clinical trials for the feasibility of PGx implementation, ethical considerations, technological advancements, and global collaborations to overcome these barriers

    Identification of two novel autism genes, TRPC4 and SCFD2, in Qatar simplex families through exome sequencing

    Get PDF
    This study investigated the genetic underpinnings of autism spectrum disorder (ASD) in a Middle Eastern cohort in Qatar using exome sequencing. The study identified six candidate autism genes in independent simplex families, including both four known and two novel autosomal dominant and autosomal recessive genes associated with ASD. The variants consisted primarily of de novo and homozygous missense and splice variants. Multiple individuals displayed more than one candidate variant, suggesting the potential involvement of digenic or oligogenic models. These variants were absent in the Genome Aggregation Database (gnomAD) and exhibited extremely low frequencies in the local control population dataset. Two novel autism genes, TRPC4 and SCFD2, were discovered in two Qatari autism individuals. Furthermore, the D651A substitution in CLCN3 and the splice acceptor variant in DHX30 were identified as likely deleterious mutations. Protein modeling was utilized to evaluate the potential impact of three missense variants in DEAF1, CLCN3, and SCFD2 on their respective structures and functions, which strongly supported the pathogenic natures of these variants. The presence of multiple de novo mutations across trios underscored the significant contribution of de novo mutations to the genetic etiology of ASD. Functional assays and further investigations are necessary to confirm the pathogenicity of the identified genes and determine their significance in ASD. Overall, this study sheds light on the genetic factors underlying ASD in Qatar and highlights the importance of considering diverse populations in ASD research

    Therapeutic targeting of the TPX2/TTK network in colorectal cancer

    No full text
    Abstract Background While the increased screening, changes in lifestyle, and recent advances in treatment regimen have decreased colorectal cancer (CRC) mortality, metastatic disease and recurrence remains a major clinical challenge. In the era of precision medicine, the identification of actionable novel therapeutic targets could ultimately offer an alternative treatment strategy for CRC. Methods RNA-Seq was conducted using the illumina platform, while bioinformatics analyses were conducted using CLC genomics workbench and iDEP.951. Colony forming unit, flow cytometry, and fluorescent microscopy were used to assess cell proliferation, cell cycle distribution, and cell death, respectively. The growth potential of CRC cells under 3-dimensional (3D) conditions was assessed using Matrigel. STRING database (v11.5) and Ingenuity Pathway Analysis (IPA) tool were used for network and pathway analyses. CRISPR-Cas9 perturbational effects database was used to identify potential therapeutic targets for CRC, through integration with gene-drug interaction database. Structural modeling and molecular docking were used to assess the interaction between candidate drugs and their targets. Results In the current study, we investigated the therapeutic potential of targeting TPX2, TTK, DDX39A, and LRP8, commonly upregulated genes in CRC identified through differential expression analysis in CRC and adjacent non-cancerous tissue. Targeted depletion of TPX2 and TTK impaired CRC proliferation, cell cycle progression, and organoid formation under 3D culture conditions, while suppression of DDX39A and LRP8 had modest effects on CRC colony formation. Differential expression analysis and bioinformatics on TPX2 and TTK-deficient cells identified cell cycle regulation as the hallmark associated with loss of TPX2 and TTK. Elevated expression of TPX2 and TTK correlated with an oncogenic state in tumor tissue from patients with colon adenocarcinoma, thus corroborating an oncogenic role for the TPX2/TTK network in the pathogenesis of CRC. Gene set enrichment and pathway analysis of TPX2high/TTKhigh CRC identified numerous additional gene targets as integral components of the TPX2/TTK network. Integration of TPX2/TTK enriched network with CRISPR-Cas9 functional screen data identified numerous novel dependencies for CRC. Additionally, gene-drug interaction analysis identified several druggable gene targets enriched in the TPX2/TTK network, including AURKA, TOP2A, CDK1, BIRC5, and many others. Conclusions Our data has implicated an essential role for TPX2 and TTK in CRC pathogenesis and identified numerous potential therapeutic targets and their drug interactions, suggesting their potential clinical use as a novel therapeutic strategy for patients with CRC. Video Abstrac

    A comparative study of Bisulphite-seq analysis pipeline

    No full text
    Recent advances in next generation sequencing (NGS) technology provide the opportunity to rapidly understand whole genome methylation profile. However, there are challenges in handling and interpretation of the methylation sequence data because of its large volume and the consequences of bisulphite modification. Most of the current pipelines include a specific aligner to decode and quantify the fraction of methylated cytosine per base; further this quantitative data is studied for differential methylation and annotated for genomic features. We have examined the performance of three pipelines for alignment and differential methylation profiling using the published data from plant and animals. We compared the consistency across these tools and explored various visualization features. We also illustrate our in-house visualization based analytic tool for a higher quality comprehension of whole genome methylation profile. Our comparative study showcases the performance of the widely accepted tools and can guide the scientific community in choosing the appropriate method for their methylation data analysis

    Forging the Path to Precision Medicine in Qatar: A Public Health Perspective on Pharmacogenomics Initiatives

    Get PDF
    Pharmacogenomics (PGx) is an important component of precision medicine that promises tailored treatment approaches based on an individual’s genetic information. Exploring the initiatives in research that help to integrate PGx test into clinical setting, identifying the potential barriers and challenges as well as planning the future directions, are all important for fruitful PGx implementation in any population. Qatar serves as an exemplar case study for the Middle East, having a small native population compared to a diverse immigrant population, advanced healthcare system, national genome program, and several educational initiatives on PGx and precision medicine. This paper attempts to outline the current state of PGx research and implementation in Qatar within the global context, emphasizing ongoing initiatives and educational efforts. The inclusion of PGx in university curricula and healthcare provider training, alongside precision medicine conferences, showcase Qatar’s commitment to advancing this field. However, challenges persist, including the requirement for population specific implementation strategies, complex genetic data interpretation, lack of standardization, and limited awareness. The review suggests policy development for future directions in continued research investment, conducting clinical trials for the feasibility of PGx implementation, ethical considerations, technological advancements, and global collaborations to overcome these barriers.The author(s) declare financial support was received for the research, authorship, and/or publication of this article. Funding from the Qatar University and Hamad Bin Khalifa University are greatly acknowledged. The funders had no role in the study design, analysis or reporting

    Studying carrier frequency of spinal muscular atrophy in the State of Qatar and comparison to other ethnic groups: Pilot study

    No full text
    Abstract Background Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutations and deletions in SMN1 at exon 7. The carrier frequency for SMN1 mutations ranges from 2 to 4% in the general population. Methods We examined allelic, genotypic relatedness and copy number (CN) variations and frequencies of SMN1 and SMN2, in 13,426 samples from Qatar biobank (QBB) to provide a precise estimation of SMA carrier frequency in Qatar in comparison to other populations. Results The SMA carrier frequency was found to be (2.8%) and the rs143838139 was found in 491/13426 (3.66%) of individuals. The SNP rs121909192, which is a pathogenic risk factor, was found in 321/13500 (2.38%). In Addition 242/11379 (2.13%) had two copies of SMN1 and the rs143838139, which may explain the (2 + 0) silent carrier. Additionally, two participants were found to be SMA type 4 with 0 and 4 copy numbers in SMN1 and SMN2, respectively. Conclusion The SMA carrier frequency in Qatar was found to be comparable to Saudi Arabia and Caucasians. The likely pathogenic variant, rs121909192, was found to be significantly higher when compering with other in our study. The rs143838139 variant, which has a strong association with the silent carrier genotype, has been found. Consequently, testing for this SNP may enhance the precision of evaluating the likelihood of a patient having an affected child. We conclude that the frequency of SMA carriers varies within the Qatar population and other ethnic groups

    Complete mitogenome reveals genetic divergence and phylogenetic relationships among Indian cattle (<i>Bos indicus</i>) breeds

    No full text
    <p>Indigenous cattle of India belong to the species, <i>Bos indicus</i> and they possess various adaptability and production traits. However, little is known about the genetic diversity and origin of these breeds. To investigate the status, we sequenced and analyzed the whole mitochondrial DNA (mtDNA) of seven Indian cattle breeds. In total, 49 single-nucleotide variants (SNVs) were identified among the seven breeds analyzed. We observed a common synonymous SNV in the COII gene (m.7583G > A) of all the breeds studied. The phylogenetic analysis and genetic distance estimation showed the close genetic relationship among the Indian cattle breeds, whereas distinct genetic differences were observed between <i>Bos indicus</i> and <i>Bos taurus</i> cattle. Our results indicate a common ancestor for European Zwergzebu breed and South Indian cattle. The estimated divergence time demonstrated that the <i>Bos indicus</i> and <i>Bos taurus</i> cattle lineages diverged 0.92 million years ago. Our study also demonstrates that ancestors of present zebu breeds originated in South and North India separately ∼30,000 to 20,000 years ago. In conclusion, the identified genetic variants and results of the phylogenetic analysis may provide baseline information to develop appropriate strategies for management and conservation of Indian cattle breeds.</p

    Association of single nucleotide polymorphisms with dyslipidemia and risk of metabolic disorders in the State of Qatar

    Get PDF
    Background: Dyslipidemia is recognized as one of the risk factors of cardiovascular diseases (CVDs), type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD). Objective: The study aimed to investigate the association between selected single nucleotide polymorphisms (SNPs) with dyslipidemia and increased susceptibility risks of CVD, NAFLD, and/or T2DM in dyslipidemia patients in comparison with healthy control individuals from the Qatar genome project. Methods: A community-based cross-sectional study was conducted among 2933 adults (859 dyslipidemia patients and 2074 healthy control individuals) from April to December 2021 to investigate the association between 331 selected SNPs with dyslipidemia and increased susceptibility risks of CVD, NAFLD and/or T2DM, and covariates. Results: The genotypic frequencies of six SNPs were found to be significantly different in dyslipidemia patients subjects compared to the control group among males and females. In males, three SNPs were found to be significant, the rs11172113 in over-dominant model, the rs646776 in recessive and over-dominant models, and the rs1111875 in dominant model. On the other hand, two SNPs were found to be significant in females, including rs2954029 in recessive model, and rs1801251 in dominant and recessive models. The rs17514846 SNP was found for dominant and over-dominant models among males and only the dominant model for females. We found that the six SNPs linked to gender type had an influence in relation to disease susceptibility. When controlling for the four covariates (gender, obesity, hypertension, and diabetes), the difference between dyslipidemia and the control group remained significant for the six variants. Finally, males were three times more likely to have dyslipidemia in comparison with females, hypertension was two times more likely to be present in the dyslipidemia group, and diabetes was six times more likely to be in the dyslipidemia group. Conclusion: The current investigation provides evidence of association for a common SNP to coronary heart disease and suggests a sex-dependent effect and encourage potential therapeutic applications. Keywords: Qatar genome project (QGP); cardiovascular disease (CVD); coronary artery disease (CAD); diabetes; dyslipidemia; hypertension; metabolic; non-alcoholic fatty liver disease (NAFLD); single nucleotide polymorphism (SNP). © 2023 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC
    corecore