563 research outputs found

    Near-threshold high-order harmonic spectroscopy with aligned molecules

    Full text link
    We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This work shows that high harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure

    SOXS: a wide band spectrograph to follow up transients

    Get PDF
    SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ~ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.Comment: 12 pages, 14 figures, to be published in SPIE Proceedings 1070

    PARAGON - An integrated approach for characterizing aerosol climate impacts and environmental interactions

    No full text
    Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air qualit

    Two different charge-separation pathways in photosystem II

    Get PDF
    Charge separation is an essential step in the conversion of solar energy into chemical energy in photosynthesis. To investigate this process, we performed transient absorption experiments at 77 K with various excitation conditions on the isolated Photosystem II reaction center preparations from spinach. The results have been analyzed by global and target analysis and demonstrate that at least two different excited states, (Ch

    Intercomparison of desert dust optical depth from satellite measurements

    Get PDF
    This work provides a comparison of satellite retrievalsof Saharan desert dust aerosol optical depth (AOD)during a strong dust event through March 2006. In this event,a large dust plume was transported over desert, vegetated,and ocean surfaces. The aim is to identify the differencesbetween current datasets. The satellite instruments consideredare AATSR, AIRS, MERIS, MISR, MODIS, OMI,POLDER, and SEVIRI. An interesting aspect is that the differentalgorithms make use of different instrument characteristicsto obtain retrievals over bright surfaces. These includemulti-angle approaches (MISR, AATSR), polarisationmeasurements (POLDER), single-view approaches using solarwavelengths (OMI, MODIS), and the thermal infraredspectral region (SEVIRI, AIRS). Differences between instruments,together with the comparison of different retrievalalgorithms applied to measurements from the same instrument,provide a unique insight into the performance andcharacteristics of the various techniques employed. As wellas the intercomparison between different satellite products,the AODs have also been compared to co-located AERONETdata. Despite the fact that the agreement between satellite andAERONET AODs is reasonably good for all of the datasets,there are significant differences between them when comparedto each other, especially over land. These differencesare partially due to differences in the algorithms, such as assumptionsabout aerosol model and surface properties. However,in this comparison of spatially and temporally averageddata, it is important to note that differences in sampling, relatedto the actual footprint of each instrument on the heterogeneousaerosol field, cloud identification and the qualitycontrol flags of each dataset can be an important issue

    The Large Array Survey Telescope -- System Overview and Performances

    Full text link
    The Large Array Survey Telescope (LAST) is a wide-field visible-light telescope array designed to explore the variable and transient sky with a high cadence. LAST will be composed of 48, 28-cm f/2.2 telescopes (32 already installed) equipped with full-frame backside-illuminated cooled CMOS detectors. Each telescope provides a field of view (FoV) of 7.4 deg^2 with 1.25 arcsec/pix, while the system FoV is 355 deg^2 in 2.9 Gpix. The total collecting area of LAST, with 48 telescopes, is equivalent to a 1.9-m telescope. The cost-effectiveness of the system (i.e., probed volume of space per unit time per unit cost) is about an order of magnitude higher than most existing and under-construction sky surveys. The telescopes are mounted on 12 separate mounts, each carrying four telescopes. This provides significant flexibility in operating the system. The first LAST system is under construction in the Israeli Negev Desert, with 32 telescopes already deployed. We present the system overview and performances based on the system commissioning data. The Bp 5-sigma limiting magnitude of a single 28-cm telescope is about 19.6 (21.0), in 20 s (20x20 s). Astrometric two-axes precision (rms) at the bright-end is about 60 (30)\,mas in 20\,s (20x20 s), while absolute photometric calibration, relative to GAIA, provides ~10 millimag accuracy. Relative photometric precision, in a single 20 s (320 s) image, at the bright-end measured over a time scale of about 60 min is about 3 (1) millimag. We discuss the system science goals, data pipelines, and the observatory control system in companion publications.Comment: Submitted to PASP, 15p

    Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument

    Get PDF
    NASA’s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) satellite mission is scheduled to launch in 2022, with the Ocean Color Instrument (OCI) on board. For the first time reflected sunlight from the Earth across a broad spectrum from the ultraviolet (UV: 350 nm) to the short wave infrared (SWIR: 2260 nm) will be measured from a single instrument at 1 km spatial resolution. While seven discrete bands will represent the SWIR, the spectrum from 350 to 890 nm will be continuously covered with a spectral resolution of 5 nm. OCI will thus combine in a single instrument (and at an enhanced spatial resolution for the UV) the heritage capabilities of the Moderate resolution Imaging Spectroradiometer (MODIS) and the Ozone Monitoring Instrument (OMI), while covering the oxygen A-band (O2A). Designed for ocean color and ocean biology retrievals, OCI also enables continuation of heritage satellite aerosol products and the development of new aerosol characterization from space. In particular the combination of MODIS and OMI characteristics allows deriving aerosol height, absorption and optical depth along with a measure of particle size distribution. This is achieved by using the traditional MODIS visible-to-SWIR wavelengths to constrain spectral aerosol optical depth and particle size. Extrapolating this information to the UV channels allows retrieval of aerosol absorption and layer height. A more direct method to derive aerosol layer height makes use of O2A absorption methods, despite the relative coarseness of the nominal 5 nm spectral resolution of OCI. Altogether the PACE mission with OCI will be an unprecedented opportunity for aerosol characterization that will continue climate data records from the past decades and propel aerosol science forward toward new opportunities

    Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial

    Get PDF
    The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity
    corecore