1,729 research outputs found

    Internal audit within the system of financial control

    Get PDF
    http://vsed.oneu.edu.uaThe results of the empirical study of internal audit function in Bulgarian enterprises allow the following conclusions and recommendations to be made: 1) In the surveyed enterprises and banks, information – evaluation function of internal audit is best developed; 2) Not sufficiently developed are activities to ensure quality and richness in content of internal audit control and methodological functions; 3) Advisory function is moderately advanced and depends on internal auditors and management’s professional skills; 4) To differentiate and define the role and place of internal audit within the system of financial control it needs to be improved in several direction: – Organizational and legal status – to this end it is advisable the mission and strategy of development of internal audit to be defined ensuring its independence with appropriate channels of reporting and interaction with the Audit Committee; – Scope and content of audit engagements – it is recommended they to be focused on main risks in the systems of financial control, risk management and business development strategies; – Improving internal audit methodology and technology – this can be achieved by adapting and coordinating the audit plan with changes in the organization, financial risks, methods of external independent audit, use of software and self-assessment of risk and control in the audit activities of internal auditors

    Analysis of packet scheduling for UMTS EUL - design decisions and performance evaluation

    Get PDF
    The UMTS Enhanced Uplink (EUL) provides higher capacity, increased data rates and smaller latency on the communication link from users towards the network. In this paper we present a performance comparison of three distinct EUL scheduling schemes (one-by-one, partial parallel and full parallel) taking into account both the packet level characteristics and the flow level dynamics due to the (random) user behaviour.\ud Using a very efficient hybrid analytical and simulation approach we analyse the three schemes with respect to performance measures such as mean file transfer time and fairness. In UMTS, a significant part of the system capacity will be used to support non-elastic voice traffic. Hence, part of our investigation is dedicated to the effects that the volume of voice traffic has on the performance of the elastic traffic supported by the EUL. Finally, we evaluate the impact that implementation specifics of a full parallel scheduler has on these measures.\ud \ud Our main conclusion is that our partial parallel scheduler, which is a hybrid between the one-by-one and full parallel, outperforms the other two schedulers in terms of mean flow transfer time, and is less sensitive to volume and nature of voice traffic. However, under certain circumstances, the partial parallel scheduler exhibits a somewhat lower fairness than the alternatives

    Impact of inter-cell interference on flow level performance of scheduling schemes for the UMTS EUL

    Get PDF
    The UMTS Enhanced Uplink (EUL) is expected to provide higher capacity, increased data rates, and smaller latency on the communication link from users towards the network. A key mechanism in EUL traffic handling is the packet scheduler, for which a number of basic schemes can be identified (one-by- one, partial parallel, and full parallel). In this paper we analyze the interaction between the EUL scheduling scheme deployed in the network and the inter-cell interference. On the one hand, different scheduling schemes cause different inter-cell interference patterns on neighbouring cells. On the other hand, the different schemes are affected by inter-cell interference in different ways. The scheduling schemes are evaluated and compared under different approaches for reserving part of the allowed noise rise at the base station for inter-cell interference. For our analysis, we have developed a hybrid analytical/simulation approach allowing for fast evaluation of performance measures such as the mean flow transfer time and fairness expressing how the performance depends on the user’s location. This approach takes into account both the packet-level characteristics and the flow-level dynamics due to the random user behaviour

    Reachability analysis of reversal-bounded automata on series–parallel graphs

    Get PDF
    Extensions to finite-state automata on strings, such as multi-head automata or multi-counter automata, have been successfully used to encode many infinite-state non-regular verification problems. In this paper, we consider a generalization of automata-theoretic infinite-state verification from strings to labelled series–parallel graphs. We define a model of non-deterministic, 2-way, concurrent automata working on series–parallel graphs and communicating through shared registers on the nodes of the graph. We consider the following verification problem: given a family of series–parallel graphs described by a context-free graph transformation system (GTS), and a concurrent automaton over series–parallel graphs, is some graph generated by the GTS accepted by the automaton? The general problem is undecidable already for (one-way) multi-head automata over strings. We show that a bounded version, where the automata make a fixed number of reversals along the graph and use a fixed number of shared registers is decidable, even though there is no bound on the sizes of series–parallel graphs generated by the GTS. Our decidability result is based on establishing that the number of context switches can be bounded and on an encoding of the computation of bounded concurrent automata that allows us to reduce the reachability problem to the emptiness problem for pushdown automata

    Scheduling strategies for LTE uplink with flow behaviour analysis

    Get PDF
    Long Term Evolution (LTE) is a cellular technology developed to support\ud diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key\ud mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of two distinct scheduling schemes for LTE uplink (fair fixed assignment and fair work-conserving) taking into account both packet level characteristics and flow level dynamics due to the random user behaviour. For that purpose, we apply a combined analytical/simulation approach which enables fast evaluation of performance measures such as mean flow transfer times manifesting the impact of resource allocation strategies. The results show that the resource allocation strategy has a crucial impact on performance and that some trends are observed only if flow level dynamics are considered

    Abstraction refinement for games with incomplete information

    Get PDF
    Counterexample-guided abstraction refinement (CEGAR) is used in automated software analysis to find suitable finite-state abstractions of infinite-state systems. In this paper, we extend CEGAR to games with incomplete information, as they commonly occur in controller synthesis and modular verification. The challenge is that, under incomplete information, one must carefully account for the knowledge available to the player: the strategy must not depend on information the player cannot see. We propose an abstraction mechanism for games under incomplete information that incorporates the approximation of the players\' moves into a knowledge-based subset construction on the abstract state space. This abstraction results in a perfect-information game over a finite graph. The concretizability of abstract strategies can be encoded as the satisfiability of strategy-tree formulas. Based on this encoding, we present an interpolation-based approach for selecting new predicates and provide sufficient conditions for the termination of the resulting refinement loop

    Synthesis of fault-tolerant distributed systems

    Get PDF
    A distributed system is fault-tolerant if it continues to perform correctly even when a subset of the processes becomes faulty. Fault-tolerance is highly desirable but often difficult to implement. In this paper, we investigate fault-tolerant synthesis, i.e., the problem of determining whether a given temporal specification can be implemented as a fault-tolerant distributed system. As in standard distributed synthesis, we assume that the specification of the correct behaviors is given as a temporal formula over the externally visible variables. Additionally, we introduce the fault-tolerance specification, a CTL* formula describing the effects and the duration of faults. If, at some point in time, a process becomes faulty, it becomes part of the external environment and its further behavior is only restricted by the fault-tolerance specification. This allows us to model a large variety of fault types. Our method accounts for the effect of faults on the values communicated by the processes, and, hence, on the information available to the non-faulty processes. We prove that for fully connected system architectures, i.e., for systems where each pair of processes is connected by a communication link, the fault-tolerant synthesis problem from CTL* specifications is 2EXPTIME-complete

    Synthesis of surveillance strategies via belief abstraction

    Get PDF
    We provide a novel framework for the synthesis of a controller for a robot with a surveillance objective, that is, the robot is required to maintain knowledge of the location of a moving, possibly adversarial target. We formulate this problem as a one-sided partial-information game in which the winning condition for the agent is specified as a temporal logic formula. The specification formalizes the surveillance requirement given by the user by quantifying and reasoning over the agent's beliefs about a target's location. We also incorporate additional non-surveillance tasks. In order to synthesize a surveillance strategy that meets the specification, we transform the partial-information game into a perfect-information one, using abstraction to mitigate the exponential blow-up typically incurred by such transformations. This transformation enables the use of off-the-shelf tools for reactive synthesis. We evaluate the proposed method on two case-studies, demonstrating its applicability to diverse surveillance requirements
    corecore