87 research outputs found

    Tumoral and non-tumoral trachea stenoses: evaluation with three-dimensional CT and virtual bronchoscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated the ability of 3D-CT and virtual bronchoscopy to estimate trachea stenosis in comparison to conventional axial CT and fiberoptic bronchoscopy, with a view to assist thoracic surgeons in depicting the anatomical characteristics of tracheal strictures.</p> <p>Methods</p> <p>Spiral CT was performed in 16 patients with suspected tracheal stenoses and in 5 normal subjects. Tracheal stenoses due to an endoluminal neoplasm were detected in 13 patients, whilst post-intubation tracheal stricture was observed in the other 3 patients. Multiplanar reformatting (MPR), volume rendering techniques (VRT) and virtual endoscopy (VE) for trachea evaluation were applied and findings were compared to axial CT and fiberoptic bronchoscopy. The accuracy of the procedure in describing the localization and degree of stenosis was tested by two radiologists in a blinded controlled trial.</p> <p>Results</p> <p>The imaging modalities tested showed the same stenoses as the ones detected by flexible bronchoscopy and achieved accurate and non-invasive morphological characterization of the strictures, as well as additional information about the extraluminal extent of the disease. No statistically significant difference was observed between the bronchoscopic findings and the results of axial CT estimations (P = 1.0). No statistically significant differences were observed between bronchoscopic findings and the MPR, VRT and VE image evaluations (P = 0.705, 0.414 and 0.414 respectively).</p> <p>Conclusion</p> <p>CT and computed generated images may provide a high fidelity, noninvasive and reproducible evaluation of the trachea compared to bronchoscopy. They may play a role in assessment of airway patency distal to high-grade stenoses, and represent a reliable alternative method for patients not amenable to conventional bronchoscopy.</p

    Multi-modality curative treatment of salivary gland cancer liver metastases with drug-eluting bead chemoembolization, radiofrequency ablation, and surgical resection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Liver metastases are rare in salivary gland tumors and have been reported only once to be the first manifestation of the disease. They are usually treated with surgical resection of the primary tumor and systemic chemotherapy. Drug-eluting bead chemoembolization has an evolving role in the treatment of hepatocellular carcinoma, as well as in the treatment of metastatic disease of the liver. Nevertheless, it has never been used in a patient with salivary gland liver metastases.</p> <p>Case presentation</p> <p>We report a case of a 51-year-old Caucasian Greek woman who presented to our hospital with liver metastases as the first manifestation of an adenoid cystic carcinoma of the left submandibular gland. The liver lesions were deemed inoperable because of their size and multi-focality and proved resistant to systemic chemotherapy. She was curatively treated with a combination of doxorubicin eluting bead (DC Beads) chemoembolization, intra-operative and percutaneous radiofrequency ablation, and radiofrequency-assisted surgical resection. The patient remained disease-free one year after the surgical resection.</p> <p>Conclusion</p> <p>In conclusion, this complex case is an example of inoperable liver metastatic disease from the salivary glands that was refractory to systemic chemotherapy but was curatively treated with a combination of locoregional therapies and surgery. A multi-disciplinary approach and the adoption of modern radiological techniques produced good results after conventional therapies failed and there were no other available treatment modalities.</p

    Transauricular embolization of the rabbit coronary artery for experimental myocardial infarction: comparison of a minimally invasive closed-chest model with open-chest surgery

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To date, most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation. We aimed to develop a novel, percutaneous, minimally-invasive, closed-chest model of experimental myocardial infarction (EMI) in the New Zealand White rabbit and compare it with the standard open-chest surgical model in order to minimize local and systemic side-effects of major surgery.</p> <p>Methods</p> <p>New Zealand White rabbits were handled in conformity with the "Guide for the Care and Use of Laboratory Animals" and underwent EMI under intravenous anesthesia. Group A underwent EMI with an open-chest method involving surgical tracheostomy, a mini median sternotomy incision and left anterior descending (LAD) coronary artery ligation with a plain suture, whereas Group B underwent EMI with a closed-chest method involving fluoroscopy-guided percutaneous transauricular intra-arterial access, superselective LAD catheterization and distal coronary embolization with a micro-coil. Electrocardiography (ECG), cardiac enzymes and transcatheter left ventricular end-diastolic pressure (LVEDP) measurements were recorded. Surviving animals were euthanized after 4 weeks and the hearts were harvested for Hematoxylin-eosin and Masson-trichrome staining.</p> <p>Results</p> <p>In total, 38 subjects underwent EMI with a surgical (n = 17) or endovascular (n = 21) approach. ST-segment elevation (1.90 ± 0.71 mm) occurred sharply after surgical LAD ligation compared to progressive ST elevation (2.01 ± 0.84 mm;p = 0.68) within 15-20 min after LAD micro-coil embolization. Increase of troponin and other cardiac enzymes, abnormal ischemic Q waves and LVEDP changes were recorded in both groups without any significant differences (p > 0.05). Infarct area was similar in both models (0.86 ± 0.35 cm in the surgical group vs. 0.92 ± 0.54 cm in the percutaneous group;p = 0.68).</p> <p>Conclusion</p> <p>The proposed model of transauricular coronary coil embolization avoids thoracotomy and major surgery and may be an equally reliable and reproducible platform for the experimental study of myocardial ischemia.</p

    Endovascular equipoise shift in a phase III randomized clinical trial of sonothrombolysis for acute ischemic stroke

    Get PDF
    Background: Results of our recently published phase III randomized clinical trial of ultrasound-enhanced thrombolysis (sonothrombolysis) using an operator-independent, high frequency ultrasound device revealed heterogeneity of patient recruitment among centers. Methods: We performed a post hoc analysis after excluding subjects that were recruited at centers reporting a decline in the balance of randomization between sonothrombolysis and concurrent endovascular trials. Results: From a total of 676 participants randomized in the CLOTBUST-ER trial we identified 52 patients from 7 centers with perceived equipoise shift in favor of endovascular treatment. Post hoc sensitivity analysis in the intention-to-treat population adjusted for age, National Institutes of Health Scale score at baseline, time from stroke onset to tPA bolus and baseline serum glucose showed a significant (p &lt; 0.01) interaction of perceived endovascular equipoise shift on the association between sonothrombolysis and 3 month functional outcome [adjusted common odds ratio (cOR) in centers with perceived endovascular equipoise shift: 0.22, 95% CI 0.06–0.75; p = 0.02; adjusted cOR for centers without endovascular equipoise shift: 1.20, 95% CI 0.89–1.62; p = 0.24)]. After excluding centers with perceived endovascular equipoise shift, patients randomized to sonothrombolysis had higher odds of 3 month functional independence (mRS scores 0–2) compared with patients treated with tPA only (adjusted OR: 1.53; 95% CI 1.01–2.31; p = 0.04). Conclusion: Our experience in CLOTBUST-ER indicates that increasing implementation of endovascular therapies across major academic stroke centers raises significant challenges for clinical trials aiming to test noninterventional or adjuvant reperfusion strategies

    A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Get PDF
    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission

    Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number

    Get PDF
    Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens
    corecore