9 research outputs found

    Emerging technologies in adipose tissue research

    No full text
    ABSTRACTTechnologies are transforming the understanding of adipose tissue as a complex and dynamic tissue that plays a critical role in energy homoeostasis and metabolic health. This mini-review provides a brief overview of the potential impact of novel technologies in biomedical research and aims to identify areas where these technologies can make the most significant contribution to adipose tissue research. It discusses the impact of cutting-edge technologies such as single-cell sequencing, multi-omics analyses, spatial transcriptomics, live imaging, 3D tissue engineering, microbiome analysis, in vivo imaging, and artificial intelligence/machine learning. As these technologies continue to evolve, we can expect them to play an increasingly important role in advancing our understanding of adipose tissue and improving the treatment of related diseases

    The effects of irisin and leptin on steroidogenic enzyme gene expression in human granulosa cells: In vitro studies

    No full text
    Reproduction and energy metabolism are closely related, and fertility can be directly affected by either obesity or malnutrition. In this study, we investigated the in vitro effects of irisin and leptin, two hormones primarily involved in energy metabolism, on the expression of genes encoding key steroidogenic enzymes in primary cultures of human granulosa cells. Granulosa cells were purified from follicular fluid samples obtained during in vitro fertilization (IVF) procedure, cultured, and treated with irisin (125-2000 ng/ml) or leptin (25–400 ng/ml) for 1–3 days. mRNA expression levels of cytochrome P450 enzymes [CYP11A1, CYP19A1, CYP21A2], hydroxy-delta-5-steroid dehydrogenase, 3 beta and steroid delta-isomerase 1 (HSD3B1), and hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3) were measured using qRT-PCR analysis. Irisin significantly upregulated CYP19A1 mRNA levels, while leptin upregulated CYP19A1 and HSD3B1 mRNA levels. These preliminary results show that irisin and leptin may directly affect the expression of the genes important for ovarian steroidogenesis and female reproduction

    Antibacterial and Antiviral Properties of Tetrahydrocurcumin-Based Formulations: An Overview of Their Metabolism in Different Microbiotic Compartments

    No full text
    In this review, the basic metabolic characteristics of the curcuminoid tetrahydrocurcumin (THC) at the level of the intestinal microbiota were addressed. Special attention was given to the bactericidal effects of one of the THC-phospholipid formulations, which has shown greater bioavailability and activity than pure THC. Similarly, quinoline derivatives and amino acid conjugates of THC have also shown antibacterial effects in the gut. The microbial effect of pure THC is particularly pronounced in pathophysiological conditions related to the function of the intestinal microbiota, such as type II diabetes. Furthermore, the antiviral characteristics of Cur compared to those of THC are more pronounced in preventing the influenza virus. In the case of HIV infections, the new microemulsion gel formulations of THC possess high retention during preventive application in the vagina and, at the same time, do not disturb the vaginal microbiota, which is critical in maintaining low vaginal pH. Based on the reviewed literature, finding new formulations of THC which can increase its bioavailability and activity and emphasize its antibacterial and antiviral characteristics could be very important. Applying such THC formulations in preventing and treating ailments related to the microbiotic compartments in the body would be beneficial from a medical point of view

    Protective Effects of L-2-Oxothiazolidine-4-Carboxylate during Isoproterenol-Induced Myocardial Infarction in Rats: In Vivo Study

    No full text
    This study aimed to evaluate the cardioprotective effects of L-2-oxothiazolidine-4-carboxylate (OTC) against isoproterenol (ISO)-induced acute myocardial infarction (MI) in rats. Results demonstrated that OTC treatments inhibited ISO-induced oxidative damage, suppressed lipid peroxidation, and increased superoxide dismutase and catalase activity in the hearts of the treated rats compared to those of the untreated controls. The ISO-related NF-κB activation was reduced due to the OTC treatment, and lower degrees of inflammatory cell infiltration and necrosis in the hearts were observed. In summary, OTC treatments exerted cardioprotective effects against MI in vivo, mainly due to enhancing cardiac antioxidant activity

    Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery

    No full text
    EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24’s remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application

    Phyto-polyphenols as potential inhibitors of breast cancer metastasis

    Get PDF
    Abstract Breast cancer is the most common cancer among women as metastasis is currently the main cause of mortality. Breast cancer cells undergoing metastasis acquire resistance to death signals and increase of cellular motility and invasiveness. Plants are rich in polyphenolic compounds, many of them with known medicinal effects. Various phyto-polyphenols have also been demonstrated to suppress cancer growth. Their mechanism of action is usually pleiotropic as they target multiple signaling pathways regulating key cellular processes such as proliferation, apoptosis and differentiation. Importantly, some phyto- polyphenols show low level of toxicity to untransformed cells, but selective suppressing effects on cancer cells proliferation and differentiation. In this review, we summarize the current information about the mechanism of action of some phyto-polyphenols that have demonstrated anti-carcinogenic activities in vitro and in vivo. Gained knowledge of how these natural polyphenolic compounds work can give us a clue for the development of novel anti-metastatic agents

    Phyto-polyphenols as potential inhibitors of breast cancer metastasis

    No full text
    corecore