11 research outputs found

    Energy Consumption and Energy Efficiency Trends in the EU-28 2000-2015

    Get PDF
    This report aims at showing the present status of energy consumption in the EU-28, in the four main energy consuming sectors: residential, tertiary, transport and industry. During the last years, there have been efforts by the European Union to cut down on energy consumption and improve energy efficiency. From 2000 to 2014, there have been various initiatives that aim at reducing final energy consumption. Therefore, the report demonstrates the energy consumption progress from 2000 to 2015 in the mentioned four sectors.JRC.C.2-Energy Efficiency and Renewable

    Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences

    Get PDF
    A rapid coal phase-out is needed to meet the goals of the Paris Agreement, but is hindered by serious challenges ranging from vested interests to the risks of social disruption. To understand how to organize a global coal phase-out, it is crucial to go beyond cost-effective climate mitigation scenarios and learn from the experience of previous coal transitions. Despite the relevance of the topic, evidence remains fragmented throughout different research fields, and not easily accessible. To address this gap, this paper provides a systematic map and comprehensive review of the literature on historical coal transitions. We use computer-assisted systematic mapping and review methods to chart and evaluate the available evidence on historical declines in coal production and consumption. We extracted a dataset of 278 case studies from 194 publications, covering coal transitions in 44 countries and ranging from the end of the 19th century until 2021. We find a relatively recent and rapidly expanding body of literature reflecting the growing importance of an early coal phase-out in scientific and political debates. Previous evidence has primarily focused on the United Kingdom, the United States, and Germany, while other countries that experienced large coal declines, like those in Eastern Europe, are strongly underrepresented. An increasing number of studies, mostly published in the last 5 years, has been focusing on China. Most of the countries successfully reducing coal dependency have undergone both demand-side and supply-side transitions. This supports the use of policy approaches targeting both demand and supply to achieve a complete coal phase-out. From a political economy perspective, our dataset highlights that most transitions are driven by rising production costs for coal, falling prices for alternative energies, or local environmental concerns, especially regarding air pollution. The main challenges for coal-dependent regions are structural change transformations, in particular for industry and labor. Rising unemployment is the most largely documented outcome in the sample. Policymakers at multiple levels are instrumental in facilitating coal transitions. They rely mainly on regulatory instruments to foster the transitions and compensation schemes or investment plans to deal with their transformative processes. Even though many models suggest that coal phase-outs are among the low-hanging fruits on the way to climate neutrality and meeting the international climate goals, our case studies analysis highlights the intricate political economy at work that needs to be addressed through well-designed and just policies.BMBF, 01LA1826A, Ökonomie des Klimawandels - Verbundprojekt: Die politische Ökonomie eines globalen Kohleausstiegs (PEGASOS) - Teilprojekt 1: Koordination, Analyse der politischen Ökonomie vergangener KohleausstiegeBMBF, 01LA1810A, Ökonomie des Klimawandels - Verbundprojekt: Die Zukunft fossiler Energieträger im Zuge von Treibhausgasneutralität (FFF) - Teilprojekt 1: Implementierung von AusstiegspfadenBMBF, 01LN1704A, Nachwuchsgruppe Globaler Wandel: CoalExit - Die Ökonomie des Kohleausstiegs - Identifikation von Bausteinen für Rahmenpläne zukünftiger regionaler StrukturwandelBMBF, 01LG1910A, Qualitätssicherung von IPCC-AR6: Chapter Scientist für WG III, Kapitel 2 (Emissions trends and drivers

    Climate actions, market beliefs, and monetary policy

    No full text
    This paper studies the role of expectations and monetary policy in the economy's response to climate actions. We show that in a stochastic environment, without the standard assumption of the perfect rationality of agents, there is more uncertainty regarding the path and the economic impact of a climate policy, with a potential threat to the ability of central banks to maintain price stability. Market beliefs and behavioral agents increase the trade-offs inherent to the chosen mitigation tool, with a carbon tax entailing more emissions uncertainty than in a rational expectations model and a cap-and-trade scheme implying a more pronounced pressure on allowance prices and inflation. The impact on price stability is worsened by delays in the implementation of stringent climate policies, the lack of confidence in the ability of central banks to keep inflation under control, and the adoption of monetary rules tied to expectations rather than current macroeconomic conditions. Central banks can implement successful stabilization policies that reduce the uncertainty surrounding the impact of climate actions and support the greening process while remaining within their mandate

    Analysis of the EU Residential Energy Consumption: Trends and Determinants

    No full text
    This article analyses the status and trends of the European Union (EU) residential energy consumption in light of the energy consumption targets set by the EU 2020 and 2030 energy and climate strategies. It assesses the energy efficiency progress from 2000 to 2016, using the official Eurostat data. In 2016, the residential energy consumption amounted to 25.71% of the EU’s final energy consumption, representing the second largest consuming sector after transport. Consumption-related data are discussed together with data on some main energy efficiency policies and energy consumption determinants, such as economic and population growth, weather conditions, and household and building characteristics. Indicators are identified to show the impact of specific determinants on energy consumption and a new indicator is proposed, drawing a closer link between energy trends and policy and technological changes in the sector. The analysis of these determinants highlights the complex dynamics behind the demand of energy in the residential sector. Decomposition analysis is carried out using the Logarithmic Mean Divisia Index technique to provide a more complete picture of the impact of various determinants (population, wealth, intensity, and weather) on the latest EU-28 residential energy consumption trends. The article provides a better understanding of the EU residential energy consumption, its drivers, the impact of current policies, and recommendations on future policies.JRC.C.2-Energy Efficiency and Renewable

    Analysis of the EU Residential Energy Consumption: Trends and Determinants

    No full text
    This article analyses the status and trends of the European Union (EU) residential energy consumption in light of the energy consumption targets set by the EU 2020 and 2030 energy and climate strategies. It assesses the energy efficiency progress from 2000 to 2016, using the official Eurostat data. In 2016, the residential energy consumption amounted to 25.71% of the EU’s final energy consumption, representing the second largest consuming sector after transport. Consumption-related data are discussed together with data on some main energy efficiency policies and energy consumption determinants, such as economic and population growth, weather conditions, and household and building characteristics. Indicators are identified to show the impact of specific determinants on energy consumption and a new indicator is proposed, drawing a closer link between energy trends and policy and technological changes in the sector. The analysis of these determinants highlights the complex dynamics behind the demand of energy in the residential sector. Decomposition analysis is carried out using the Logarithmic Mean Divisia Index technique to provide a more complete picture of the impact of various determinants (population, wealth, intensity, and weather) on the latest EU-28 residential energy consumption trends. The article provides a better understanding of the EU residential energy consumption, its drivers, the impact of current policies, and recommendations on future policies

    Coal transitions—part 2: phase-out dynamics in global long-term mitigation scenarios

    No full text
    A rapid phase-out of unabated coal use is essential to limit global warming to below 2 °C. This review presents a comprehensive assessment of coal transitions in mitigation scenarios consistent with the Paris Agreement, using data from more than 1500 publicly available scenarios generated by more than 30 integrated assessment models. Our ensemble analysis uses clustering techniques to categorize coal transition pathways in models and bridges evidence on technological learning and innovation with historical data of energy systems. Six key findings emerge: First, we identify three archetypal coal transitions within Paris-consistent mitigation pathways. About 38% of scenarios are ‘coal phase out’ trajectories and rapidly reduce coal consumption to near zero. ‘Coal persistence’ pathways (42%) reduce coal consumption much more gradually and incompletely. The remaining 20% follow ‘coal resurgence’ pathways, characterized by increased coal consumption in the second half of the century. Second, coal persistence and resurgence archetypes rely on the widespread availability and rapid scale-up of carbon capture and storage technology (CCS). Third, coal-transition archetypes spread across all levels of climate policy ambition and scenario cycles, reflecting their dependence on model structures and assumptions. Fourth, most baseline scenarios—including the shared socio-economic pathways (SSPs)—show much higher coal dependency compared to historical observations over the last 60 years. Fifth, coal-transition scenarios consistently incorporate very optimistic assumptions about the cost and scalability of CCS technologies, while being pessimistic about the cost and scalability of renewable energy technologies. Sixth, evaluation against coal-dependent baseline scenarios suggests that many mitigation scenarios overestimate the technical difficulty and costs of coal phase-outs. To improve future research, we recommend using up-to-date cost data and evidence about innovation and diffusion dynamics of different groups of zero or low-carbon technologies. Revised SSP quantifications need to incorporate projected technology learning and consistent cost structures, while reflecting recent trends in coal consumption
    corecore