4,736 research outputs found

    RISK AND MARKET PARTICIPANT BEHAVIOR IN THE U.S. SLAUGHTER-CATTLE MARKET

    Get PDF
    Incomplete information generates uncertainty for market participants in the slaughter-cattle market. Buyer and seller behavior in the presence of that uncertainty is examined. Statistically significant risk premiums are charged by packers when buying slaughter cattle on either a live- or dressed-weight basis compared to buying on a grade-and-yield basis. Pratt-Arrow risk-aversion coefficients are calculated for buyers and these remain constant over all marketing methods. Sellers market cattle under all three marketing methods, suggesting producersÂ’' attitudes toward risk (risk-aversion coefficients) vary.Risk and Uncertainty,

    First Records Affect Future Performance

    Get PDF

    Comparative overview of brain perfusion imaging techniques Epub

    Get PDF

    Animal Improvement Through Selection

    Get PDF

    The Pearl Harbor Papers: Inside the Japanese Plans

    Get PDF

    Kolmogorov Similarity Hypotheses for Scalar Fields: Sampling Intermittent Turbulent Mixing in the Ocean and Galaxy

    Full text link
    Kolmogorov's three universal similarity hypotheses are extrapolated to describe scalar fields like temperature mixed by turbulence. By the analogous Kolmogorov third hypothesis for scalars, temperature dissipation rates chi averaged over lengths r > L_K should be lognormally distributed with intermittency factors I that increase with increasing turbulence energy length scales L_O as I_chi-r = m_T ln(L_O/r). Tests of Kolmogorovian velocity and scalar universal similarity hypotheses for very large ranges of turbulence length and time scales are provided by data from the ocean and the Galactic interstellar medium. The universal constant for turbulent mixing intermittency m_T is estimated from oceanic data to be 0.44+-0.01, which is remarkably close to estimates for Kolmogorov's turbulence intermittency constant m_u of 0.45+-0.05 from Galactic as well as atmospheric data. Extreme intermittency complicates the oceanic sampling problem, and may lead to quantitative and qualitative undersampling errors in estimates of mean oceanic dissipation rates and fluxes. Intermittency of turbulence and mixing in the interstellar medium may be a factor in the formation of stars.Comment: 23 pages original of Proc. Roy. Soc. article, 8 figures; in "Turbulence and Stochastic Processes: Kolmogorov's ideas 50 years on", London The Royal Society, 1991, J.C.R. Hunt, O.M. Phillips, D. Williams Eds., pages 1-240, vol. 434 (no. 1890) Proc. Roy. Soc. Lond. A, PDF fil

    H2 in the interstitial channels of nanotube bundles

    Get PDF
    The equation of state of H2 adsorbed in the interstitial channels of a carbon nanotube bundle has been calculated using the diffusion Monte Carlo method. The possibility of a lattice dilation, induced by H2 adsorption, has been analyzed by modeling the cohesion energy of the bundle. The influence of factors like the interatomic potentials, the nanotube radius and the geometry of the channel on the bundle swelling is systematically analyzed. The most critical input is proved to be the C-H2 potential. Using the same model than in planar graphite, which is expected to be also accurate in nanotubes, the dilation is observed to be smaller than in previous estimations or even inexistent. H2 is highly unidimensional near the equilibrium density, the radial degree of freedom appearing progressively at higher densities.Comment: Accepted for publication in PR

    Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life

    Get PDF
    Citation: Sung, W., Ackerman, M. S., Dillon, M. M., Platt, T. G., Fuqua, C., Cooper, V. S., & Lynch, M. (2016). Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life. G3-Genes Genomes Genetics, 6(8), 2583-2591. doi:10.1534/g3.116.030890/-/DC1Mutations are the ultimate source of variation used for evolutionary adaptation, while also being predominantly deleterious and a source of genetic disorders. Understanding the rate of insertion-deletion mutations (indels) is essential to understanding evolutionary processes, especially in coding regions, where such mutations can disrupt production of essential proteins. Using direct estimates of indel rates from 14 phylogenetically diverse eukaryotic and bacterial species, along with measures of standing variation in such species, we obtain results that imply an inverse relationship of mutation rate and effective population size. These results, which corroborate earlier observations on the base-substitution mutation rate, appear most compatible with the hypothesis that natural selection reduces mutation rates per effective genome to the point at which the power of random genetic drift (approximated by the inverse of effective population size) becomes overwhelming. Given the substantial differences in DNA metabolism pathways that give rise to these two types of mutations, this consistency of results raises the possibility that refinement of other molecular and cellular traits may be inversely related to species-specific levels of random genetic drift

    Size Effects in Carbon Nanotubes

    Full text link
    The inter-shell spacing of multi-walled carbon nanotubes was determined by analyzing the high resolution transmission electron microscopy images of these nanotubes. For the nanotubes that were studied, the inter-shell spacing d^002{\hat{d}_{002}} is found to range from 0.34 to 0.39 nm, increasing with decreasing tube diameter. A model based on the results from real space image analysis is used to explain the variation in inter-shell spacings obtained from reciprocal space periodicity analysis. The increase in inter-shell spacing with decreased nanotube diameter is attributed to the high curvature, resulting in an increased repulsive force, associated with the decreased diameter of the nanotube shells.Comment: 4 pages. RevTeX. 4 figure
    • …
    corecore