52 research outputs found

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17 that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth

    General Anesthetics Predicted to Block the GLIC Pore with Micromolar Affinity

    Get PDF
    Although general anesthetics are known to modulate the activity of ligand-gated ion channels in the Cys-loop superfamily, there is at present neither consensus on the underlying mechanisms, nor predictive models of this modulation. Viable models need to offer quantitative assessment of the relative importance of several identified anesthetic binding sites. However, to date, precise affinity data for individual sites has been challenging to obtain by biophysical means. Here, the likely role of pore block inhibition by the general anesthetics isoflurane and propofol of the prokaryotic pentameric channel GLIC is investigated by molecular simulations. Microscopic affinities are calculated for both single and double occupancy binding of isoflurane and propofol to the GLIC pore. Computations are carried out for an open-pore conformation in which the pore is restrained to crystallographic radius, and a closed-pore conformation that results from unrestrained molecular dynamics equilibration of the structure. The GLIC pore is predicted to be blocked at the micromolar concentrations for which inhibition by isofluorane and propofol is observed experimentally. Calculated affinities suggest that pore block by propofol occurs at signifcantly lower concentrations than those for which inhibition is observed: we argue that this discrepancy may result from binding of propofol to an allosteric site recently identified by X-ray crystallography, which may cause a competing gain-of-function effect. Affinities of isoflurane and propofol to the allosteric site are also calculated, and shown to be 3 mM for isoflurane and for propofol; both anesthetics have a lower affinity for the allosteric site than for the unoccupied pore

    Development of a generic activation mode: nucleophilic a-substitution of ketones via oxy-allyl cations †

    No full text
    Oxy-allyl cations have been known as transient electrophilic species since they were first proposed as intermediates in the Favorskii rearrangement in 1894. Since that time, they also have been used as a mode of activation for [4 + 3] cycloadditions in a variety of natural product syntheses. In this manuscript, we describe a method for the interception of oxy-allyl cations with a diverse range of common nucleophiles, thereby demonstrating the value of this intermediate as a generic mode of activation. This simple, mild, room temperature protocol allows for the formation of a variety of high value carbon-carbon and carbonheteroatom bonds that are readily incorporated within a series of cyclic and acyclic ketone systems. Initial efforts into the development of an enantioselective catalytic variant are also described
    • …
    corecore