1,959 research outputs found

    Determinant Formulas for Matrix Model Free Energy

    Full text link
    The paper contains a new non-perturbative representation for subleading contribution to the free energy of multicut solution for hermitian matrix model. This representation is a generalisation of the formula, proposed by Klemm, Marino and Theisen for two cut solution, which was obtained by comparing the cubic matrix model with the topological B-model on the local Calabi-Yau geometry II^\hat {II} and was checked perturbatively. In this paper we give a direct proof of their formula and generalise it to the general multicut solution.Comment: 5 pages, submitted to JETP Letters, references added, minor correction

    Konishi anomaly and N=1 effective superpotentials from matrix models

    Get PDF
    We discuss the restrictions imposed by the Konishi anomaly on the matrix model approach to the calculation of the effective superpotentials in N=1 SUSY gauge theories with different matter content. It is shown that they correspond to the anomaly deformed Virasoro L0L_0 constraints .Comment: Latex, 8 pages, misprint and the normalization of the condensate in the elliptic model are correcte

    Holomorphic matrix models

    Full text link
    This is a study of holomorphic matrix models, the matrix models which underlie the conjecture of Dijkgraaf and Vafa. I first give a systematic description of the holomorphic one-matrix model. After discussing its convergence sectors, I show that certain puzzles related to its perturbative expansion admit a simple resolution in the holomorphic set-up. Constructing a `complex' microcanonical ensemble, I check that the basic requirements of the conjecture (in particular, the special geometry relations involving chemical potentials) hold in the absence of the hermicity constraint. I also show that planar solutions of the holomorphic model probe the entire moduli space of the associated algebraic curve. Finally, I give a brief discussion of holomorphic ADEADE models, focusing on the example of the A2A_2 quiver, for which I extract explicitly the relevant Riemann surface. In this case, use of the holomorphic model is crucial, since the Hermitian approach and its attending regularization would lead to a singular algebraic curve, thus contradicting the requirements of the conjecture. In particular, I show how an appropriate regularization of the holomorphic A2A_2 model produces the desired smooth Riemann surface in the limit when the regulator is removed, and that this limit can be described as a statistical ensemble of `reduced' holomorphic models.Comment: 45 pages, reference adde

    Effective matter superpotentials from Wishart random matrices

    Get PDF
    We show how within the Dijkgraaf-Vafa prescription one can derive superpotentials for matter fields. The ingredients forming the non-perturbative Affleck-Dine-Seiberg superpotentials arise from constrained matrix integrals, which are equivalent to classical complex Wishart random matrices. The mechanism is similar to the way the Veneziano-Yankielowicz superpotential arises from the matrix model measure.Comment: 9 pages; v2: published versio

    2D String Theory as Normal Matrix Model

    Full text link
    We show that the c=1c=1 bosonic string theory at finite temperature has two matrix-model realizations related by a kind of duality transformation. The first realization is the standard one given by the compactified matrix quantum mechanics in the inverted oscillator potential. The second realization, which we derive here, is given by the normal matrix model. Both matrix models exhibit the Toda integrable structure and are associated with two dual cycles (a compact and a non-compact one) of a complex curve with the topology of a sphere with two punctures. The equivalence of the two matrix models holds for an arbitrary tachyon perturbation and in all orders in the string coupling constant.Comment: lanlmac, 21 page

    On Equivalence of Topological and Quantum 2d Gravity

    Full text link
    We demonstrate the equivalence of Virasoro constraints imposed on continuum limit of partition function of Hermitean 1-matrix model and the Ward identities of Kontsevich's model. Since the first model describes ordinary d=2d = 2 quantum gravity, while the second one is supposed to coincide with Witten's topological gravity, the result provides a strong implication that the two models are indeed the same.Comment: 14 pages (August 1991

    Baby Universes in String Theory

    Get PDF
    We argue that the holographic description of four-dimensional BPS black holes naturally includes multi-center solutions. This suggests that the holographic dual to the gauge theory is not a single AdS_2 times S^2 but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e^{-N}) non-perturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave-function of the multi-center black holes gets mapped to the Hartle-Hawking wave-function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.Comment: 39 pages, 7 figure

    Perturbative analysis of gauged matrix models

    Get PDF
    We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that nonperturbative aspects of [script N] = 1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for [script N] = 2 gauge theory, the Montonen-Olive modular invariance for [script N] = 1*, and the superpotential for the Leigh-Strassler deformation of [script N] = 4 can be systematically computed in perturbation theory of the matrix model or gauge theory (even though in some of these cases an exact answer can also be obtained by summing up planar diagrams of matrix models)

    Branched Matrix Models and the Scales of Supersymmetric Gauge Theories

    Full text link
    In the framework of the matrix model/gauge theory correspondence, we consider supersymmetric U(N) gauge theory with U(1)NU(1)^N symmetry breaking pattern. Due to the presence of the Veneziano--Yankielowicz effective superpotential, in order to satisfy the FF--term condition iSi=0\sum_iS_i=0, we are forced to introduce additional terms in the free energy of the corresponding matrix model with respect to the usual formulation. This leads to a matrix model formulation with a cubic potential which is free of parameters and displays a branched structure. In this way we naturally solve the usual problem of the identification between dimensionful and dimensionless quantities. Furthermore, we need not introduce the N=1\N=1 scale by hand in the matrix model. These facts are related to remarkable coincidences which arise at the critical point and lead to a branched bare coupling constant. The latter plays the role of the N=1\N=1 and N=2\N=2 scale tuning parameter. We then show that a suitable rescaling leads to the correct identification of the N=2\N=2 variables. Finally, by means of the the mentioned coincidences, we provide a direct expression for the N=2\N=2 prepotential, including the gravitational corrections, in terms of the free energy. This suggests that the matrix model provides a triangulation of the istanton moduli space.Comment: 1+18 pages, harvmac. Added discussion on the CSW relative shifts of theta vacua and the odd phases at the critical point. References added and typos correcte

    On the Matter of the Dijkgraaf--Vafa Conjecture

    Full text link
    With the aim of extending the gauge theory -- matrix model connection to more general matter representations, we prove that for various two-index tensors of the classical gauge groups, the perturbative contributions to the glueball superpotential reduce to matrix integrals. Contributing diagrams consist of certain combinations of spheres, disks, and projective planes, which we evaluate to four and five loop order. In the case of Sp(N)Sp(N) with antisymmetric matter, independent results are obtained by computing the nonperturbative superpotential for N=4,6N=4,6 and 8. Comparison with the Dijkgraaf-Vafa approach reveals agreement up to N/2N/2 loops in matrix model perturbation theory, with disagreement setting in at h=N/2+1h=N/2+1 loops, hh being the dual Coxeter number. At this order, the glueball superfield SS begins to obey nontrivial relations due to its underlying structure as a product of fermionic superfields. We therefore find a relatively simple example of an N=1{\cal N}=1 gauge theory admitting a large NN expansion, whose dynamically generated superpotential differs from the one obtained in the matrix model approach.Comment: 20 pages, harvmac. v2: added comments and reference
    corecore