374 research outputs found

    Nanoparticles-cell association predicted by protein corona fingerprints

    Get PDF
    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a "protein corona" layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ≈ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells

    Nanoparticles-cell association predicted by protein corona fingerprints

    Get PDF
    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a "protein corona" layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ≈ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells

    Nature-based molecules combined with rivastigmine: A symbiotic approach for the synthesis of new agents against Alzheimer's disease

    Get PDF
    Starting from nature as original source, new potential agents with pleiotropic activities have been synthesized and evaluated as neuroprotective agents. In this work, novel nature-based hybrids, combining antioxidant motifs with rivastigmine, have been designed and synthesized. The biological results revealed that the new compounds inhibit both AChE and BuChE. In particular, lipoic acid hybrids LA1, LA2, LA3 resulted to be the most potent inhibitors of BuChE showing IC50 values ranging from 340 to 378 nM. Analogously, all the compounds were able to inhibit the self β-amyloid1-42 aggregation. The gallic acid hybrid GA2 as well as the 2-chromonecarboxylic acid hybrids CA1 and CA2 prevented the self-mediated Aβ aggregation with percentages of inhibition ranging from 53% to 59%. Finally, some of them also show potent neuroprotective effects against glutamate-induced cell death and low toxicity in HT22 cells

    Insights into the effect of polyethylene terephthalate (PET) microplastics on HER2 signaling pathways

    Get PDF
    Plastic pollution poses a significant threat to both ecosystems and human health, as fragments of microscale size are daily inhaled and ingested. Such tiny specks are defined as microplastics (MPs), and although their presence as environmental contaminants is ubiquitous in the world, their possible effects at biological and physiological levels are still not clear. To explore the potential impacts of MP exposure, we produced and characterized polyethylene terephthalate (PET) micro-fragments, then administered them to living cells. PET is widely employed in the production of plastic bottles, and thus represents a potential source of environmental MPs. However, its potential effects on public health are hardly investigated, as the current bio-medical research on MPs mainly utilizes different models, such as polystyrene particles. This study employed cell viability assays and Western blot analysis to demonstrate cell-dependent and dose-dependent cytotoxic effects of PET MPs, as well as a significant impact on HER-2-driven signaling pathways. Our findings provide insight into the biological effects of MP exposure, particularly for a widely used but poorly investigated material such as PET

    The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery

    Get PDF
    Lipofectamine reagents are widely accepted as "gold-standard" for the safe delivery of exogenous DNA or RNA into cells. Despite this, a satisfactory mechanism-based explanation of their superior efficacy has remained mostly elusive thus far. Here we apply a straightforward combination of live cell imaging, single-particle tracking microscopy, and quantitative transfection-efficiency assays on live cells to unveil the intracellular trafficking mechanism of Lipofectamine/DNA complexes. We find that Lipofectamine, contrary to alternative formulations, is able to efficiently avoid active intracellular transport along microtubules, and the subsequent entrapment and degradation of the payload within acidic/digestive lysosomal compartments. This result is achieved by random Brownian motion of Lipofectamine-containing vesicles within the cytoplasm. We demonstrate here that Brownian diffusion is an efficient route for Lipofectamine/DNA complexes to avoid metabolic degradation, thus leading to optimal transfection. By contrast, active transport along microtubules results in DNA degradation and subsequent poor transfection. Intracellular trafficking, endosomal escape and lysosomal degradation appear therefore as highly interdependent phenomena, in such a way that they should be viewed as a single barrier on the route for efficient transfection. As a matter of fact, they should be evaluated in their entirety for the development of optimized non-viral gene delivery vectors

    Simultaneous Combination of the CDK4/6 Inhibitor Palbociclib With Regorafenib Induces Enhanced Anti-tumor Effects in Hepatocarcinoma Cell Lines

    Get PDF
    Advanced hepatocarcinoma (HCC) is an aggressive malignancy with poor prognosis and limited treatment options. Alterations of the cyclin D-CDK4/6-Rb pathway occur frequently in HCC, providing the rationale for its targeting at least in a molecular subset of HCC. In a panel of HCC cell lines, we investigated whether the CDK4/6 inhibitor palbociclib might improve the efficacy of regorafenib, a powerful multi-kinase inhibitor approved as second-line treatment for advanced HCC after sorafenib failure and currently under clinical investigation as first-line therapy in combination with immunotherapy. In Rb-proficient cells, the simultaneous drug combination, but not the sequential schedules, inhibited cell proliferation, either in short or in long-term experiments, and induced cell death more strongly than individual treatments. Moreover, the combination significantly reduced spheroid cell growth and inhibited cell migration/invasion. The superior efficacy of palbociclib plus regorafenib emerged also under hypoxia and was associated with a significant down-regulation of CDK4/6-Rb-myc and mTORC1/p70S6K signaling. Moreover, regorafenib suppressed palbociclib-induced expression of cyclin D1 contributing to the cytotoxic effects of the combination. Besides these inhibitory effects on cell viability/proliferation, palbociclib and regorafenib reduced glucose uptake, although this effect was dependent on the cell model and on the oxygen availability (normoxia or hypoxia). Palbociclib and regorafenib combination impaired glucose uptake and utilization, down-regulating basal and hypoxia-induced expression of HIF-1α, HIF-2α, GLUT-1, and MCT4 proteins as well as the activity/expression of glycolytic enzymes (HK2, PFKP, aldolase A, PKM2). In addition, regorafenib alone reduced mitochondrial respiration. The combined treatment impaired glucose metabolism and respiration without enhancing the effects of the single agents. Our findings provide pre-clinical evidence for the effectiveness of palbociclib and regorafenib combination in HCC cell models

    Dual inhibition of CDK4/6 and PI3K/AKT/mTOR signaling impairs energy metabolism in MPM cancer cells

    Get PDF
    Background: Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated to asbestos exposure. One of the most frequent genetic alteration in MPM patients is CDKN2A/ARF loss, leading to aberrant activation of the Rb pathway. In MPM cells, we previously demonstrated the therapeutic efficacy of targeting this signaling with the CDK4/6 inhibitor palbociclib in combination with PI3K/mTOR inhibitors. Here, we investigated whether such combination may have an impact on cell energy metabolism. Methods: The study was performed in MPM cells of different histotypes; metabolic analyses were conducted by measuring GLUT-1 expression and glucose uptake/consumption, and by SeaHorse technologies. Results: MPM cell models differed for their ability to adapt to metabolic stress conditions, such as glucose starvation and hypoxia. Independently of these differences, combined treatments with palbociclib and PI3K/mTOR inhibitors inhibited cell proliferation more efficaciously than single agents. The drugs alone reduced glucose uptake/consumption as well as glycolysis, and their combination further enhanced these effects under both normoxic and hypoxic conditions. Moreover, the drug combinations significantly impaired mitochondrial respiration as compared with individual treatments. These metabolic effects were mediated by the concomitant inhibition of Rb/E2F/c-myc and PI3K/AKT/mTOR signaling. Conclusions: Dual blockade of glycolysis and respiration contributes to the anti-tumor efficacy of palbociclib-PI3K/mTOR inhibitors combination

    Health-seeking beliefs of cardiovascular patients: A qualitative study

    Full text link
    Objectives: The study aims were to (a) describe the experiences of Chinese Australians with heart disease following discharge from hospital for an acute cardiac event; (b) identify patterns and cultural differences of Chinese Australians following discharge from hospital; and (c) illustrate the illness/health seeking behaviors and health beliefs of Chinese Australians. Design: Qualitative study. Methods: Interview data were obtained from the following sources: (a) focus groups of Chinese community participants without heart disease; (b) interviews with patients recently discharged from hospital following an admission for an acute cardiac event; and (c) interviews with Chinese-born health professionals working in Australia. Qualitative thematic analysis was undertaken. Results: Study themes generated from the data were: (1) linking traditional values and beliefs with Western medicine; (2) reverence for health professionals and family; and (3) juxtaposing traditional beliefs and self-management. Conclusions: Considering the influence of cultural values in developing health care plans and clinical decision making is important. © 2011 Elsevier Ltd
    • …
    corecore