730 research outputs found

    Camp Counseling and the Development and Transfer of Workforce Skills: The Perspective of Ohio 4-H Camp Counselor Alumni

    Get PDF
    Recent research shows that camp counselors, including those in 4-H, benefit from the experience by developing important life skills. However, because research regarding the perception of workforce skill development in this context has yielded inconsistent findings, the present study used focus groups to examine 4-H camp counselor alumni perceptions about the skills gained and transfer of these skills to other settings. Overall, 4-H camp counselor alumni thought their experience was fun and enjoyable, yet challenging. They believed they developed important life and workforce skills. Not only did alumni learn these skills, but the skills transferred beyond the camp setting. Leadership was noted as the skill most frequently applied to other contexts. Alumni believed that their counseling experiences had both indirect and direct impacts on their career choice. This study suggests many practical applications for those who work with camp programs

    Pressure dependence of the sound velocity in a 2D lattice of Hertz-Mindlin balls: a mean field description

    Full text link
    We study the dependence on the external pressure PP of the velocities vL,Tv_{L,T} of long wavelength sound waves in a confined 2D h.c.p. lattice of 3D elastic frictional balls interacting via one-sided Hertz-Mindlin contact forces, whose diameters exhibit mild dispersion. The presence of an underlying long range order enables us to build an effective medium description which incorporates the radial fluctuations of the contact forces acting on a single site. Due to the non linearity of Hertz elasticity, self-consistency results in a highly non-linear differential equation for the "equation of state" linking the effective stiffness of the array with the applied pressure, from which sound velocities are then obtained. The results are in excellent agreement with existing experimental results and simulations in the high and intermediate pressure regimes. It emerges from the analysis that the departure of vL(P)v_{L}(P) from the ideal P1/6P^{1/6} Hertz behavior must be attributed primarily to the fluctuations of the stress field, rather than to the pressure dependence of the number of contacts

    Building Success in Online Educational Programs for Adult Learners

    Get PDF
    The purpose of this symposium is to explore multiple perspectives on building and maintaining high quality online educational programs in university settings for adult learners

    Why Effective Medium Theory Fails in Granular Materials

    Full text link
    Experimentally it is known that the bulk modulus, K, and shear modulus, \mu, of a granular assembly of elastic spheres increase with pressure, p, faster than the p^1/3 law predicted by effective medium theory (EMT) based on Hertz-Mindlin contact forces. To understand the origin of these discrepancies, we perform numerical simulations of granular aggregates under compression. We show that EMT can describe the moduli pressure dependence if one includes the increasing number of grain-grain contacts with p. Most important, the affine assumption (which underlies EMT), is found to be valid for K(p) but breakdown seriously for \mu(p). This explains why the experimental and numerical values of \mu(p) are much smaller than the EMT predictions.Comment: 4 pages, 5 figures, http://polymer.bu.edu/~hmaks

    Granular Packings: Nonlinear elasticity, sound propagation and collective relaxation dynamics

    Full text link
    Experiments on isotropic compression of a granular assembly of spheres show that the shear and bulk moduli vary with the confining pressure faster than the 1/3 power law predicted by Hertz-Mindlin effective medium theories (EMT) of contact elasticity. Moreover, the ratio between the moduli is found to be larger than the prediction of the elastic theory by a constant value. The understanding of these discrepancies has been a longstanding question in the field of granular matter. Here we perform a test of the applicability of elasticity theory to granular materials. We perform sound propagation experiments, numerical simulations and theoretical studies to understand the elastic response of a deforming granular assembly of soft spheres under isotropic loading. Our results for the behavior of the elastic moduli of the system agree very well with experiments. We show that the elasticity partially describes the experimental and numerical results for a system under compressional loads. However, it drastically fails for systems under shear perturbations, particularly for packings without tangential forces and friction. Our work indicates that a correct treatment should include not only the purely elastic response but also collective relaxation mechanisms related to structural disorder and nonaffine motion of grains.Comment: 21 pages, 13 figure

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe

    Excess AGN Activity in the z=2.30 Protocluster in HS 1700+64

    Get PDF
    We present the results of spectroscopic, narrow-band and X-ray observations of a z=2.30 protocluster in the field of the QSO HS 1700+643. Using a sample of BX/MD galaxies, which are selected to be at z~2.2-2.7 by their rest-frame ultraviolet colours, we find that there are 5 protocluster AGN which have been identified by characteristic emission-lines in their optical/near-IR spectra; this represents an enhancement over the field significant at ~98.5 per cent confidence. Using a ~200 ks Chandra/ACIS-I observation of this field we detect a total of 161 X-ray point sources to a Poissonian false-probability limit of 4x10^{-6} and identify 8 of these with BX/MD galaxies. Two of these are spectroscopically confirmed protocluster members and are also classified as emission-line AGN. When compared to a similarly selected field sample the analysis indicates this is also evidence for an enhancement of X-ray selected BX/MD AGN over the field, significant at ~99 per cent confidence. Deep Lya narrow-band imaging reveals that a total of 4/123 Lya emitters (LAEs) are found to be associated with X-ray sources, with two of these confirmed protocluster members and one highly likely member. We do not find a significant enhancement of AGN activity in this LAE sample over that of the field (result significant at only 87 per cent confidence). The X-ray emitting AGN fractions for the BX/MD and LAE samples are found to be 6.9_{-4.4}^{+9.2} and 2.9_{-1.6}^{+2.9} per cent, respectively, for protocluster AGN with L_{2-10 keV}>4.6x10^{43} erg s^{-1} at z=2.30. These findings are similar to results from the z=3.09 protocluster in the SSA 22 field found by Lehmer et al. (2009), in that both suggest AGN activity is favoured in dense environments at z>2.Comment: 8 pages, 2 figures. Accepted for publication in MNRAS

    How well do Earth system models reproduce the observed aerosol response to rapid emission reductions? A COVID-19 case study

    Get PDF
    The spring 2020 COVID-19 lockdowns led to a rapid reduction in aerosol and aerosol precursor emissions. These emission reductions provide a unique opportunity for model evaluation and to assess the potential efficacy of future emission control measures. We investigate changes in observed regional aerosol optical depth (AOD) during the COVID-19 lockdowns and use these observed anomalies to evaluate Earth system model simulations forced with COVID-19-like reductions in aerosols and greenhouse gases. Most anthropogenic source regions do not exhibit statistically significant changes in satellite retrievals of total or dust-subtracted AOD, despite the dramatic economic and lifestyle changes associated with the pandemic. Of the regions considered, only India exhibits an AOD anomaly that exceeds internal variability. Earth system models reproduce the observed responses reasonably well over India but initially appear to overestimate the magnitude of response in East China and when averaging over the Northern Hemisphere (0–70∘ N) as a whole. We conduct a series of sensitivity tests to systematically assess the contributions of internal variability, model input uncertainty, and observational sampling to the aerosol signal, and we demonstrate that the discrepancies between observed and simulated AOD can be partially resolved through the use of an updated emission inventory. The discrepancies can also be explained in part by characteristics of the observational datasets. Overall our results suggest that current Earth system models have potential to accurately capture the effects of future emission reductions.</p
    • …
    corecore