1,196 research outputs found
Stable thrust on a finite-sized magnet above a Meissner superconducting torus
Forces and torques exerted by a superconducting torus on a permanent magnet
have been mapped. It is demonstrated that stable orbits exist. Moreover,
provided that the magnet remains in any of these orbits, the first critical
field in the superconductor is never overpassed and the superconductor remains
in the Meissner state. The consequent absence of hysteresis makes these kinds
of device perfect candidates for non-frictional bearings or gyroscopes.Comment: accepted versio
Influencia del comportamiento humano en la efectividad de intercambio del conocimiento en la empresa
El objetivo de este trabajo es identificar y analizar la
influencia que el comportamiento y las relaciones humanas ejercen en el intercambio del conocimiento en la empresa para dos tipos de trabajadores: los recién incorporados o ‘novatos’ y los experimentados o ‘veteranos’. Se abordan los efectos de tres variables concretas: la hostilidad del conocimiento, entendida como la negativa del trabajador a compartir su conocimiento; la prescindibilidad del trabajador o percepción de pérdida de relevancia por transmitir el conocimiento a otros; y el interés del conocimiento, que es la motivación por adquirir nuevos conocimientos. Para salvar la dificultad que supone
contrastar tales relaciones en la realidad de la empresa, se ha utilizado la metodología de simulación con multiagentes en Netlogo, configurando el estudio sobre tres tipos de simulación con tres opciones para cada una y generando 2000 simulaciones con 250 ciclos de movimientos en cada simulación.
Esta metodología ha permitido representar y obtener conclusiones valiosas, abriendo un amplio campo de posibilidades para la investigación de fenómenos relacionados con la Gestión del Conocimiento. El trabajo presenta dos novedades importantes: la identificación de las variables estudiadas y la metodología utilizada. De los resultados destácase que la hostilidad favorece el intercambio cuando aumentan los trabajadores veteranos y lo contrario para el caso de los novatos; el sentimiento de prescindibilidad dificulta compartir conocimientos entre veteranos y novatos; y el interés provoca siempre un aumento de los intercambios, independientemente del número y la categoría de los trabajadores
Estudio teórico-empírico de las barreras al intercambio del conocimiento en la empresa
El objetivo de este trabajo es investigar las barreras u obstáculos que dificultan el intercambio del conocimiento entre los trabajadores desde las perspectivas teórica y práctica. Se trata de una investigación novedosa en España por el tamaño de la muestra utilizada, pues sólo se han encontrado tres referencias de esta naturaleza para empresas chinas y americanas. A ese fin se han revisado los estudios teóricos de naturaleza psicológica y motivacional que explican el comportamiento y la actitud del trabajador, y los estudios sobre el clima, compromiso y estilo de
dirección que afectan a la compartición del conocimiento en la empresa. Esto justifica las bases teóricas en las que se sustenta el estudio, así como su propósito y los beneficios que aporta a la organización. Para la investigación empírica se ha elaborado una encuesta para una muestra de 557 trabajadores de 27 empresas de la provincia de Burgos, España. Los resultados obtenidos, referidos a las personas, revelan que las barreras más importantes al intercambio son la apropiación del conocimiento por los demás, la falta de incentivos explícitos, la ausencia de reciprocidad entre los compañeros y el contrato temporal o eventual. En cuanto a las negligencias o conductas de la dirección destacan la contratación por influencias o ‘enchufismo’, el acoso y humillación hacia el empleado, los climas laborales
inadecuados, una estructura organizativa mal diseñada o inexistente, o los estilos de dirección autoritarios y personalistas
Magnetic Gearboxes for Aerospace Applications
Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer
Next-gen Industry 4.0 with 5G:enabling secure and high-performance services for critical infrastructure
The advent of Industry 4.0 heralds a new era in manufacturing, driven by advancements in automation, IoT, and AI. Integral to this shift is the deployment of robust communication networks capable of real-time data exchange. Leveraging 5G technology, with its low latency and high bandwidth, is crucial in meeting these demands. However, integrating vertical services with 5G networks poses challenges. This paper, part of the 5 G-INDUCE project, focuses on deploying and validating corrosion inspection and intruder surveillance services for critical infrastructures. Trials conducted at the Greek Experimentation Facility showcased successful service deployment, configuration, and high-definition video streaming. Quantitative results exceeded expected Key Performance Indicators, demonstrating the platform’s efficacy in integrating advanced network applications. This work contributes to the evolution of Industry 4.0 by harnessing the transformative potential of 5 G technology
Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications
Harmonic drives are profusely used in aerospace mainly because of their compactness and large reduction ratio. However, their use in cryogenic environments is still a challenge. Lubrication and fatigue are non-trivial issues under these conditions. The objective of the Magnetic-Superconductor Cryogenic Non-contact Harmonic Drive (MAGDRIVE) project, funded by the EU Space FP7, is to design, build, and test a new concept of MAGDRIVE. Non-contact interactions among magnets, soft magnetic materials, and superconductors are efficiently used to provide a high reduction ratio gear that smoothly and naturally operates at cryogenic environments. The limiting elements of conventional harmonic drives (teeth, flexspline, and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between moving parts prevents wear, lubricants are no longer required, and the operational lifetime is greatly increased. This is the first mechanical reducer in mechanical engineering history without any contact between moving parts. In this paper, the test results of a −1:20 inverse reduction ratio MAGDRIVE prototype are reported. In these tests, successful operation at 40 K and 10−3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 N·m and an efficiency of 80% were demonstrated. The maximum tested input speed was 3000 rpm, six times the previous existing record for harmonic drives at cryogenic temperature
Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information
Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/
Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)
Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear.
Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese.
Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire.
Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19).
Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect
Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies
Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease
- …