11 research outputs found

    Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms

    Get PDF
    Biofilm formation is critical for the infection cycle of Vibrio cholerae. Vibrio exopolysaccharides (VPS) and the matrix proteins RbmA, Bap1 and RbmC are required for the development of biofilm architecture. We demonstrate that RbmA binds VPS directly and uses a binary structural switch within its first fibronectin type III (FnIII-1) domain to control RbmA structural dynamics and the formation of VPS-dependent higher-order structures. The structural switch in FnIII-1 regulates interactions in trans with the FnIII-2 domain, leading to open (monomeric) or closed (dimeric) interfaces. The ability of RbmA to switch between open and closed states is important for V. cholerae biofilm formation, as RbmA variants with switches that are locked in either of the two states lead to biofilms with altered architecture and structural integrity

    The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion

    No full text
    The NSF homolog Sec18 initiates fusion of yeast vacuoles by disassembling cis-SNARE complexes during priming. Sec18 is also required for palmitoylation of the fusion factor Vac8, although the acylation machinery has not been identified. Here we show that the SNARE Ykt6 mediates Vac8 palmitoylation and acts during a novel subreaction of vacuole fusion. This subreaction is controlled by a Sec17-independent function of Sec18. Our data indicate that Ykt6 presents Pal-CoA via its N-terminal longin domain to Vac8, while transfer to Vac8's SH4 domain occurs spontaneously and not enzymatically. The conservation of Ykt6 and its localization to several organelles suggest that its acyltransferase activity may also be required in other intracellular fusion events

    Evaluation of Data Analysis Platforms and Compatibility with MALDI-TOF Imaging Mass Spectrometry Data Sets

    No full text
    Imaging mass spectrometry (IMS) has proven to be a useful tool when investigating the spatial distributions of metabolites and proteins in a biological system. One of the biggest advantages of IMS is the ability to maintain the 3D chemical composition of a sample and analyze it in a label-free manner. However, acquiring the spatial information leads to an increase in data size. Due to the increased availability of commercial mass spectrometers capable of IMS, there has been an exciting development of different statistical tools that can help decipher the spatial relevance of an analyte in a biological sample. To address this need, software packages like SCiLS and the open source R package Cardinal have been designed to perform unbiased spectral grouping based on the similarity of spectra in an IMS data set. In this note, we evaluate SCiLS and Cardinal compatibility with MALDI-TOF IMS data sets of the Gram-negative pathogen Pseudomonas aeruginosa PA14. Both software were able to perform unsupervised segmentation with similar performance. There were a few notable differences which are discussed related to the identification of statistically significant features which required optimization of preprocessing steps, region of interest, and manual analysis

    Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms.

    Get PDF
    Biofilm formation is critical for the infection cycle of Vibrio cholerae. Vibrio exopolysaccharides (VPS) and the matrix proteins RbmA, Bap1 and RbmC are required for the development of biofilm architecture. We demonstrate that RbmA binds VPS directly and uses a binary structural switch within its first fibronectin type III (FnIII-1) domain to control RbmA structural dynamics and the formation of VPS-dependent higher-order structures. The structural switch in FnIII-1 regulates interactions in trans with the FnIII-2 domain, leading to open (monomeric) or closed (dimeric) interfaces. The ability of RbmA to switch between open and closed states is important for V. cholerae biofilm formation, as RbmA variants with switches that are locked in either of the two states lead to biofilms with altered architecture and structural integrity
    corecore