109 research outputs found

    A frost formation model and its validation under various experimental conditions

    Get PDF
    A numerical model that was used to calculate the frost properties for all regimes of frost growth is described. In the first regime of frost growth, the initial frost density and thickness was modeled from the theories of crystal growth. The 'frost point' temperature was modeled as a linear interpolation between the dew point temperature and the fog point temperature, based upon the nucleating capability of the particular condensing surfaces. For a second regime of frost growth, the diffusion model was adopted with the following enhancements: the generalized correlation of the water frost thermal conductivity was applied to practically all water frost layers being careful to ensure that the calculated heat and mass transfer coefficients agreed with experimental measurements of the same coefficients

    Integration durch Sport mit Bezug auf die Flüchtlingssituation in der Stadt Konstanz

    Get PDF
    In der Arbeit „Integration durch Sport in Bezug auf die Flüchtlingssituation in der Stadt Konstanz“ geht es um die sozialintegrative Funktion des Sports insbesondere für Migranten und Flüchtlinge. Ziel der Arbeit ist es, aufzuzeigen, welche Projekte in Konstanz bereits existieren und welche Voraussetzungen und Maßnahmen in den folgenden Jahren erforderlich sind, um Flüchtlinge mit Sport und unter anderem durch Vereine in die Gesellschaft zu integrieren

    Antwurt, das Junckfrawen die klöster und klosterliche glübd nümmer götlich verlassen mögen

    Get PDF

    Phimox ... Scripturariorum ... contra haereticum (et) De divortis

    Get PDF
    Copia digital. Madrid : Ministerio de Cultura. Subdirección General de Coordinación Bibliotecaria, 200

    Detection of SHV β-lactamases in Gram-negative bacilli using fluorescein-labeled antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-lactam resistance in Gram-negative bacteria is a significant clinical problem in the community, long-term care facilities, and hospitals. In these organisms, β-lactam resistance most commonly results from the production of β-lactamases. In Gram-negative bacilli, TEM-, SHV-, and CTX-M-type β-lactamases predominate. Therefore, new and accurate detection methods for these β-lactamase producing isolates are needed.</p> <p>Results</p> <p><it>E. coli </it>DH10B cells producing SHV-1 β-lactamase and a clinical isolate of <it>K. pneumoniae </it>producing SHV-5 β-lactamase were rendered membrane permeable, fixed and adhered to poly-L-lysine coated slides, and stained with purified polyclonal anti-SHV antibodies that were fluorescein labeled. <it>E. coli </it>DH10B cells without a <it>bla</it><sub>SHV </sub>gene were used as a negative control. The procedure generated a fluorescence signal from those slides containing cells expressing SHV β-lactamase that was sufficient for direct imaging.</p> <p>Conclusion</p> <p>We developed a rapid and accurate method of visualizing the SHV family of enzymes in clinical samples containing Gram-negative bacilli using a fluorescein-labeled polyclonal antibody.</p

    Catalytic steam gasification of biomass for a sustainable hydrogen future: influence of catalyst composition

    Get PDF
    Hydrogen is regarded as a clean energy for fuelling the future. Hydrogen will be the energy carrier from other resources such as hydropower, wind, solar and biomass. Producing hydrogen from gasification of biomass wastes, particularly in the presence of steam, represents a promising route to produce this clean and CO2-neutral fuel. The steam pyrolysis-gasification ofbiomass (wood sawdust) was carried out with various nickel-based catalysts for hydrogen production in a two-stage fixed bed reaction system. The wood sawdust was pyrolysed in the first reactor and the derived products were gasified in the second reactor in the presence of the catalyst and steam. The synthesised Ni-Ca-Al and Ni-Zn-Al catalysts were preparedbyco-precipitation method with different Ni loadings of 20 mol% and various Zn/Al or Ca/Al ratios, which were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and temperature-programmed oxidation (TPO). The results showed that the Ni/Zn-Al (1:9) catalyst resulted in higher hydrogenproduction(23.9 mmol H2 g-1biomass)compared with the Ni/Ca-Al (1:9) catalyst (12.7 23.9 mmol H2 g-1 biomass) and in addition, the increase of Ca or Zn content in the catalyst slightly increased the hydrogen production. The TPO results showed that the catalyst suffered negligible coke deposition from the catalytic steam pyrolysis/gasification of wood sawdust. Additionally, Na2CO3 basic solution was also found toproduce a catalyst with better performance and lower coke deposition, compared with NH4OH catalyst preparation agent, as observed by TPO, SEM and TEM analysis

    Novel UAV Flight Designs for Accuracy Optimization of Structure from Motion Data Products

    Get PDF
    Leveraging low-cost drone technology, specifically the DJI Mini 2, this study presents an innovative method for creating accurate, high-resolution digital surface models (DSMs) to enhance topographic mapping with off-the-shelf components. Our research, conducted near Jena, Germany, introduces two novel flight designs, the &ldquo;spiral&rdquo; and &ldquo;loop&rdquo; flight designs, devised to mitigate common challenges in structure from motion workflows, such as systematic doming and bowling effects. The analysis, based on height difference products with a lidar-based reference, and curvature estimates, revealed that &ldquo;loop&rdquo; and &ldquo;spiral&rdquo; flight patterns were successful in substantially reducing these systematic errors. It was observed that the novel flight designs resulted in DSMs with lower curvature values compared to the simple nadir or oblique flight patterns, indicating a significant reduction in distortions. The results imply that the adoption of novel flight designs can lead to substantial improvements in DSM quality, while facilitating shorter flight times and lower computational needs. This work underscores the potential of consumer-grade unoccupied aerial vehicle hardware for scientific applications, especially in remote sensing tasks

    Tree Stem Detection and Crown Delineation in a Structurally Diverse Deciduous Forest Combining Leaf-On and Leaf-Off UAV-SfM Data

    Get PDF
    Accurate detection and delineation of individual trees and their crowns in dense forest environments are essential for forest management and ecological applications. This study explores the potential of combining leaf-off and leaf-on structure from motion (SfM) data products from unoccupied aerial vehicles (UAVs) equipped with RGB cameras. The main objective was to develop a reliable method for precise tree stem detection and crown delineation in dense deciduous forests, demonstrated at a structurally diverse old-growth forest in the Hainich National Park, Germany. Stem positions were extracted from the leaf-off point cloud by a clustering algorithm. The accuracy of the derived stem co-ordinates and the overall UAV-SfM point cloud were assessed separately, considering different tree types. Extracted tree stems were used as markers for individual tree crown delineation (ITCD) through a region growing algorithm on the leaf-on data. Stem positioning showed high precision values (0.867). Including leaf-off stem positions enhanced the crown delineation, but crown delineations in dense forest canopies remain challenging. Both the number of stems and crowns were underestimated, suggesting that the number of overstory trees in dense forests tends to be higher than commonly estimated in remote sensing approaches. In general, UAV-SfM point clouds prove to be a cost-effective and accurate alternative to LiDAR data for tree stem detection. The combined datasets provide valuable insights into forest structure, enabling a more comprehensive understanding of the canopy, stems, and forest floor, thus facilitating more reliable forest parameter extraction
    corecore