564 research outputs found

    Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys

    Full text link
    We investigate the influence of environment on the cold-gas properties of galaxies at z=0 within the TNG100 cosmological, magnetohydrodynamic simulation, part of the IllustrisTNG suite. We extend previous post-processing methods for breaking gas cells into their atomic and molecular phases, and build detailed mocks to comprehensively compare to the latest surveys of atomic hydrogen (HI) in nearby galaxies, namely ALFALFA and xGASS. We use TNG100 to explore the HI content, star formation activity, and angular momentum of satellite galaxies, each as a function of environment, and find that satellites are typically a factor of ~3 poorer in HI than centrals of the same stellar mass, with the exact offset depending sensitively on parent halo mass. Due to the large physical scales on which HI measurements are made (~45--245 kpc), contributions from gas not bound to the galaxy of interest but in the same line of sight crucially lead to larger HI mass measurements in the mocks in many cases, ultimately aligning with observations. This effect is mass-dependent and naturally greater for satellites than centrals, as satellites are never isolated by definition. We also show that HI stripping in TNG100 satellites is closely accompanied by quenching, in tension with observational data that instead favour that HI is preferentially stripped before star formation is reduced.Comment: Published in MNRAS. Main body (full paper): 18 (22) pages, 10 (11) figures. New-found bug introduced in v4 mock plots fixed. BaryMP issue fixed per footnote in Dave et al. (2020). All changes are minor and do not affect text or conclusion

    Effects of nanoparticles on murine macrophages

    Get PDF
    Metallic nanoparticles are more and more widely used in an increasing number of applications. Consequently, they are more and more present in the environment, and the risk that they may represent for human health must be evaluated. This requires to increase our knowledge of the cellular responses to nanoparticles. In this context, macrophages appear as an attractive system. They play a major role in eliminating foreign matter, e.g. pathogens or infectious agents, by phagocytosis and inflammatory responses, and are thus highly likely to react to nanoparticles. We have decided to study their responses to nanoparticles by a combination of classical and wide-scope approaches such as proteomics. The long term goal of this study is the better understanding of the responses of macrophages to nanoparticles, and thus to help to assess their possible impact on human health. We chose as a model system bone marrow-derived macrophages and studied the effect of commonly used nanoparticles such as TiO2 and Cu. Classical responses of macrophage were characterized and proteomic approaches based on 2D gels of whole cell extracts were used. Preliminary proteomic data resulting from whole cell extracts showed different effects for TiO2-NPs and Cu-NPs. Modifications of the expression of several proteins involved in different pathways such as, for example, signal transduction, endosome-lysosome pathway, Krebs cycle, oxidative stress response have been underscored. These first results validate our proteomics approach and open a new wide field of investigation for NPs impact on macrophagesComment: Nanosafe2010: International Conference on Safe Production and Use of Nanomaterials 16-18 November 2010, Grenoble, France, Grenoble : France (2010

    Unconformities and Age Relationships, Tongue River and Older Members of the Fort Union Formation (Paleocene), Western Williston Basin, U.S.A.

    Get PDF
    An unconformable relationship is observed within the Paleocene Fort Union Formation in the western Williston Basin at the contact between the Tongue River Member and the underlying Lebo and Ludlow Members. Isotopic dates and pollen biozone data reported here are integrated with previously published data. A new correlation of these facies results in a revised history of localized depositional and tectonic events. One unconformity occurs at this lithological contact in the Pine Hills (PH), Terry Badlands (TB), and Ekalaka (E) areas west of the Cedar Creek anticline (CCA), and another unconformity occurs at the same lithological contact in the Little Missouri River (LMR) area east of the CCA. The two unconformities differ in age by about two million years. The older is the U2 and the younger is the U3 , which initially were recognized in the Ekalaka area of southeastern Montana (Belt et al., 2002). The U2 crops out in the TB, PH, and E areas, where at least 85 m of Tongue River strata bearing palynomorphs characteristic of biozone P-3 are found above the unconformity. Radiometric dates from strata (bearing palynomorphs characteristic of biozone P-2) below the U2 range in age from 64.0 to 64.73 Ma. The U2 unconformity west of the CCA thus occurs in strata near the base of the lower P-3 biozone. The U3 crops out in the LMR area (east of the CCA), where only 13 m of strata characterized by the P-3 pollen biozone occur above it. Radiometric dates from an ash \u3c1 m above the U3 in that area range in age from 61.03 to 61.23 Ma, and the P-3/P-4 pollen biozone boundary is located 13 m above the ashes. The U3 thus occurs in strata characterized by upper parts of the P-3 pollen biozone east of the CCA. The U3 is also identifiable in the middle of the ca. 200 m-thick Tongue River Member west of the CCA, where mammal sites 40 to 80 m above it are Tiffanian-3 in age. The strata below this unconformity are tilted gently to the northwest; strata above the unconformity are flat lying. This mid Tongue River unconformity probably correlates with the unconformity at the base of the Tongue River Member in the LMR area east of the CCA, where a Ti-2 mammal site (the “X-X” locality) occurs \u3c10 m above it. Depositional and tectonic events can be summarized using North American Mammal Age nomenclature as a relative time scale. From latest Cretaceous through Puercan time, paleodrainage was toward the east or southeast, in the direction of the Cannonball Sea. The Black Hills did not serve as an obstruction at that time. During early Torrejonian time, the Miles City arch (MCA) and Black Hills were uplifted and partially eroded, leading to the U2 unconformity. When deposition resumed, paleodrainages shifted to a northeasterly course. During middle and late Torrejonian time, facies of the lower Tongue River (“Dominy”) sequence and the Ekalaka Member of the Fort Union Formation were deposited in the middle of a subbasin between the MCA and the CCA. Simultaneously, smectite-rich components of the Ludlow Member were being deposited east of the CCA. During latest Torrejonian time, uplift of the Black Hills tilted the “Dominy” sequence toward the northwest and local erosion led to the U3 unconformity. Following this tilting, during Tiffanian time, deposition of the upper Tongue River (“Knobloch”) sequence shows continuity from western North Dakota across eastern Montana and into the northern Powder River Basin

    Evidence for Marine Influence on a Low-Gradient Coastal Plain: Ichnology and Invertebrate Paleontology of the Lower Tongue River Member (Fort Union Formation, Middle Paleocene), Western Williston Basin, U.S.A.

    Get PDF
    The Paleocene Tongue River Member of the Fort Union Formation contains trace-fossil associations indicative of marine influence in otherwise freshwater facies. The identified ichnogenera include: Arenicolites, Diplocraterion, Monocraterion, Ophiomorpha, Rhizocorallium, Skolithos linearis, Teichichnus, Thalassinoides, and one form of uncertain affinity. Two species of the marine diatom Coscinodiscus occur a few meters above the base of the member. The burrows occur in at least five discrete, thin, rippled, fine-grained sandstone beds within the lower 85 m of the member west of the Cedar Creek anticline (CCA) in the Signal Butte, Terry Badlands, and Pine Hills areas. Two discrete burrowed beds are found in the lower 10 m of the member east of the CCA in the little Missouri River area. Abundant freshwater ostracodes include Bisulcocypridea arvadensis, Candona, and Cypridopsis. Freshwater bivalves include Plesielliptio and Pachydon mactriformis. We recognize four fossil assemblages that represent fluvio-lacustrine, proximal estuarine, central estuarine, and distal estuarine environments. Biostratal alternations between fresh- and brackish-water assemblages indicate that the Tongue River Member was deposited along a low-gradient coastal plain that was repeatedly inundated from the east by the Cannonball Sea. The existence of marine-influenced beds in the Tongue River Member invalidates the basis for the Slope Formation

    Molecular hydrogen in IllustrisTNG galaxies: Carefully comparing signatures of environment with local CO and SFR data

    Get PDF
    We examine how the post-processed content of molecular hydrogen (H2) in galaxies from the TNG100 cosmological, hydrodynamic simulation changes with environment at z = 0, assessing central/satellite status and host halo mass. We make close comparisons with the carbon monoxide (CO) emission survey xCOLD GASS where possible, having mock-observed TNG100 galaxies to match the survey's specifications. For a representative sample of host haloes across 1011 ≲ M200c/M· < 1014.6, TNG100 predicts that satellites with $m∗ ≥ 109, M⊙ should have a median deficit in their H2 fractions of ∼0.6 dex relative to centrals of the same stellar mass. Once observational and group-finding uncertainties are accounted for, the signature of this deficit decreases to ∼0.2 dex. Remarkably, we calculate a deficit in xCOLD GASS satellites' H2 content relative to centrals of 0.2-0.3 dex, in line with our prediction. We further show that TNG100 and SDSS data exhibit continuous declines in the average star formation rates of galaxies at fixed stellar mass in denser environments, in quantitative agreement with each other. By tracking satellites from their moment of infall in TNG100, we directly show that atomic hydrogen (H i) is depleted at fractionally higher rates than H2 on average. Supporting this picture, we find that the H2/H i mass ratios of satellites are elevated relative to centrals in xCOLD GASS. We provide additional predictions for the effect of environment on H2-both absolute and relative to H i-that can be tested with spectral stacking in future CO surveys

    Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with local CO & SFR data

    Full text link
    We examine how the post-processed content of molecular hydrogen (H2_2) in galaxies from the TNG100 cosmological, hydrodynamic simulation changes with environment at z ⁣= ⁣0z\!=\!0, assessing central/satellite status and host halo mass. We make close comparisons with the carbon monoxide (CO) emission survey xCOLD GASS where possible, having mock-observed TNG100 galaxies to match the survey's specifications. For a representative sample of host haloes across 1011 ⁣ ⁣M200c/M ⁣< ⁣1014.610^{11}\!\lesssim\!M_{\rm 200c}/{\rm M}_{\odot}\!<\!10^{14.6}, TNG100 predicts that satellites with m ⁣ ⁣109Mm_*\!\geq\!10^9\,{\rm M}_{\odot} should have a median deficit in their H2_2 fractions of \sim0.6 dex relative to centrals of the same stellar mass. Once observational and group-finding uncertainties are accounted for, the signature of this deficit decreases to \sim0.2 dex. Remarkably, we calculate a deficit in xCOLD GASS satellites' H2_2 content relative to centrals of 0.2--0.3 dex, in line with our prediction. We further show that TNG100 and SDSS data exhibit continuous declines in the average star formation rates of galaxies at fixed stellar mass in denser environments, in quantitative agreement with each other. By tracking satellites from their moment of infall in TNG100, we directly show that atomic hydrogen (HI) is depleted at fractionally higher rates than H2_2 on average. Supporting this picture, we find that the H2_2/HI mass ratios of satellites are elevated relative to centrals in xCOLD GASS. We provide additional predictions for the effect of environment on H2_2 -- both absolute and relative to HI -- that can be tested with spectral stacking in future CO surveys.Comment: Accepted in MNRAS. Minor proofing and reference edits from v1. Main body: 19 pages, 11 figure

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human

    Expanding networks of RNA virus evolution

    Get PDF
    In a recent BMC Evolutionary Biology article, Huiquan Liu and colleagues report two new genomes of double-stranded RNA (dsRNA) viruses from fungi and use these as a springboard to perform an extensive phylogenomic analysis of dsRNA viruses. The results support the old scenario of polyphyletic origin of dsRNA viruses from different groups of positive-strand RNA viruses and additionally reveal extensive horizontal gene transfer between diverse viruses consistent with the network-like rather than tree-like mode of viral evolution. Together with the unexpected discoveries of the first putative archaeal RNA virus and a RNA-DNA virus hybrid, this work shows that RNA viral genomics has major surprises to deliver

    Modeling the atomic-to-molecular transition in cosmological simulations of galaxy formation

    Full text link
    Large-scale cosmological simulations of galaxy formation currently do not resolve the densities at which molecular hydrogen forms, implying that the atomic-to-molecular transition must be modeled either on the fly or in postprocessing. We present an improved postprocessing framework to estimate the abundance of atomic and molecular hydrogen and apply it to the IllustrisTNG simulations. We compare five different models for the atomic-to-molecular transition, including empirical, simulation-based, and theoretical prescriptions. Most of these models rely on the surface density of neutral hydrogen and the ultraviolet (UV) flux in the Lyman-Werner band as input parameters. Computing these quantities on the kiloparsec scales resolved by the simulations emerges as the main challenge. We show that the commonly used Jeans length approximation to the column density of a system can be biased and exhibits large cell-to-cell scatter. Instead, we propose to compute all surface quantities in face-on projections and perform the modeling in two dimensions. In general, the two methods agree on average, but their predictions diverge for individual galaxies and for models based on the observed midplane pressure of galaxies. We model the UV radiation from young stars by assuming a constant escape fraction and optically thin propagation throughout the galaxy. With these improvements, we find that the five models for the atomic-to-molecular transition roughly agree on average but that the details of the modeling matter for individual galaxies and the spatial distribution of molecular hydrogen. We emphasize that the estimated molecular fractions are approximate due to the significant systematic uncertainties.Comment: 22 pages, 13 figure

    Optimal trapping wavelengths of Cs2_2 molecules in an optical lattice

    Full text link
    The present paper aims at finding optimal parameters for trapping of Cs2_2 molecules in optical lattices, with the perspective of creating a quantum degenerate gas of ground-state molecules. We have calculated dynamic polarizabilities of Cs2_2 molecules subject to an oscillating electric field, using accurate potential curves and electronic transition dipole moments. We show that for some particular wavelengths of the optical lattice, called "magic wavelengths", the polarizability of the ground-state molecules is equal to the one of a Feshbach molecule. As the creation of the sample of ground-state molecules relies on an adiabatic population transfer from weakly-bound molecules created on a Feshbach resonance, such a coincidence ensures that both the initial and final states are favorably trapped by the lattice light, allowing optimized transfer in agreement with the experimental observation
    corecore