213 research outputs found

    Spacecraft Orbits for Earth/Mars-Lander Radio Relay

    Get PDF
    A report discusses a network of spacecraft, in orbit around Mars, used to relay radio communications between Earth stations and mobile exploratory robots (rovers) as well as stationary scientific instruments that have been landed on the Mars surface. The relay spacecraft include two already in orbit plus several others planned to arrive at Mars in the years 2004 through 2008. A major portion of the report is devoted to the orbit of the G. Macroni Orbiter, which is in the midst of an iterative design process and is intended to be the first Mars orbiter designed primarily for radio relay. Candidate orbits are analyzed with a view toward choosing one that maximizes the amount of time available for communication with surface units, taking account of visibility as a function of position, the limit on communication distance at low power, and the fact that surface units can transmit more easily when they are in sunlight. Two promising new orbits for Mars relay satellites are identified: a 1/2-sol apoapsis-at-constant-time-of-day equatorial orbit and a 1/4-sol apoapsis-at-constant-time-of-day, critical-inclination orbit

    Evaluation of Stormwater Filters at Mammoth Cave National Park, Kentucky, 2011-12

    Get PDF
    Studies in the 1970s found potentially toxic levels of metals entering Mammoth Cave’s underground streams through storm recharge. Additional studies confirmed that stormwater from parking lots and buildings fl owed rapidly into critical cave habitats. The Park’s management responded to these findings by installing storm runoff filter systems on the most heavily used parking lots in 2001. The Park entered an agreement (2010-12) with Tennessee State University, the USGS, and WKU-Mammoth Cave International Center for Science and Learning to evaluate the filter systems to determine if they were removing hazardous compounds from stormwater runoff . The objective of this study was to evaluate stormwater filters before and after replacing 2-year-old ZPG cartridge filters. The study focused on the first-flush runoff waters during the storms. The filters were not effective at removing quaternary ammonia compounds (QACs), and moderately eff ective at removing zinc and copper. The filters were very effective at removing diesel-range aromatic ring compounds (fuels). Regression analyses were used to evaluate trends between parking lot size and filter efficiency. The efficiency of the filters to remove fuels improved with basin size. The efficiency to remove QACs decreased with basin size. Basin size did not appear to have any correlation to zinc or copper removal efficiency. Human activity, such as construction, probably played a role in the storm-water chemistry and the efficacy of the filters to remove certain contaminants

    Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs)

    Get PDF
    Concentrations of airborne chemical and biological agents from a hazardous release are not spread uniformly. Instead, there are regions of higher concentration, in part due to local atmospheric flow conditions which can attract agents. We equipped a ground station and two rotary-wing unmanned aircraft systems (UASs) with ultrasonic anemometers. Flights reported here were conducted 10 to 15 m above ground level (AGL) at the Leach Airfield in the San Luis Valley, Colorado as part of the Lower Atmospheric Process Studies at Elevation—a Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE) campaign in 2018. The ultrasonic anemometers were used to collect simultaneous measurements of wind speed, wind direction, and temperature in a fixed triangle pattern; each sensor was located at one apex of a triangle with ∼100 to 200 m on each side, depending on the experiment. A WRF-LES model was used to determine the wind field across the sampling domain. Data from the ground-based sensors and the two UASs were used to detect attracting regions (also known as Lagrangian Coherent Structures, or LCSs), which have the potential to transport high concentrations of agents. This unique framework for detection of high concentration regions is based on estimates of the horizontal wind gradient tensor. To our knowledge, our work represents the first direct measurement of an LCS indicator in the atmosphere using a team of sensors. Our ultimate goal is to use environmental data from swarms of sensors to drive transport models of hazardous agents that can lead to real-time proper decisions regarding rapid emergency responses. The integration of real-time data from unmanned assets, advanced mathematical techniques for transport analysis, and predictive models can help assist in emergency response decisions in the future

    From 10 Kelvin to 10 TeraKelvin: Insights on the Interaction Between Cosmic Rays and Gas in Starbursts

    Full text link
    Recent work has both illuminated and mystified our attempts to understand cosmic rays (CRs) in starburst galaxies. I discuss my new research exploring how CRs interact with the ISM in starbursts. Molecular clouds provide targets for CR protons to produce pionic gamma rays and ionization, but those same losses may shield the cloud interiors. In the densest molecular clouds, gamma rays and Al-26 decay can provide ionization, at rates up to those in Milky Way molecular clouds. I then consider the free-free absorption of low frequency radio emission from starbursts, which I argue arises from many small, discrete H II regions rather than from a "uniform slab" of ionized gas, whereas synchrotron emission arises outside them. Finally, noting that the hot superwind gas phase fills most of the volume of starbursts, I suggest that it has turbulent-driven magnetic fields powered by supernovae, and that this phase is where most synchrotron emission arises. I show how such a scenario could explain the far-infrared radio correlation, in context of my previous work. A big issue is that radio and gamma-ray observations imply CRs also must interact with dense gas. Understanding how this happens requires a more advanced understanding of turbulence and CR propagation.Comment: Conference proceedings for "Cosmic-ray induced phenomenology in star-forming environments: Proceedings of the 2nd Session of the Sant Cugat Forum of Astrophysics" (April 16-19, 2012). 16 pages, 5 figure

    Carbohydrate-Aromatic Interactions in Proteins

    Get PDF
    Protein-carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C-H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C-H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C-H bonds engage more often in CH-Ï€ interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate-aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C-H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein-carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein-carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure
    • …
    corecore