51 research outputs found

    Integral antimicrobial control: a strategy against nosocomial infections in veterinary

    Get PDF
    91-99El desarrollo de mecanismos de prevenci?n y control frente a los microorganismos nosocomiales son esfuerzos importantes para desarrollar en los hospitales tanto humanos como veterinarios. Entre las estrategias encaminadas a reducir la flora microbiana pat?gena y la resistencia a m?ltiples f?rmacos en los hospitales, se encuentran la reducci?n de la diseminaci?n de microorganismos por parte del personal a los animales, evitar la adquisici?n de microorganismos de equipos hospitalarios y de infraestructura, la realizaci?n de programas permanentes de limpieza, desinfecci?n y esterilizaci?n y un uso racional de los antimicrobianos. El presente art?culo describe los principios fundamentales del control microbiol?gico hospitalario, basado en el contexto m?dico veterinario en Colombia.ABSTRACT. The development of preventive and control mechanisms to nosocomial microorganisms are important efforts to develop both human and veterinary hospitals. Among those strategies aimed to reduce both pathogenic microbial flora and multidrug resistance in hospitals are the reduction of microorganisms dissemination from staff to animals, avoiding acquisition of microorganisms from hospital equipment sand infrastructure, conducting permanent cleaning, disinfection and sterilization programs; and a rational use of antimicrobials. The present document describes the fundamental principles of in hospital microbiological control, fitted to the veterinary medical context in Colombia

    Human malaria diagnosis using a single-step direct-PCR based on the Plasmodium cytochrome oxidase III gene

    Get PDF
    Background: Nested PCRs based on the Plasmodium 18s-rRNA gene have been extensively used for human malaria diagnosis. However, they are not practical when large quantities of samples need to be processed, further there have been challenges in the performance and when interpreting results, especially when submicroscopic infections are analysed. Here the use of "direct PCR" was investigated with the aim of improving diagnosis in the malaria elimination era.\ud \ud Methods: The performance of the Plasmodium cytochrome oxidase III gene (COX-III) based novel malaria detection strategies (direct nested PCR and direct single PCR) were compared using a 18s-rRNA direct nested PCR as a reference tool. Evaluations were based on sensitivity, specificity and the ability to detect mixed infections using control blood spot samples and field collected blood samples with final species diagnosis confirmation by sequencing.\ud \ud Results: The COX-III direct PCR (limit of detection: 0.6–2 parasites/μL) was more sensitive than the 18s-rRNA direct nested PCR (limit of detection: 2–10 parasites/μL). The COX-III direct PCR identified all 21 positive controls (no mixed infections detected) while the 18s-rRNA direct nested PCR identified 18/21 (including four mixed infections). Different concentrations of simulated mixed infections (Plasmodium vivax and Plasmodium falciparum) suggest that the COX-III direct PCR detects only the predominant species. When the 18s-rRNA direct nested PCR was used to detect Plasmodium in field collected bloods spots (n = 3833), there was discrepancy in the results from the genus PCR (16 % positive) and the species-specific PCR (5 % positive). Further, a large portion of a subset of these positive samples (93 % for genus and 60 % for P. vivax), did not align with Plasmodium sequences. In contrast, the COX-III direct PCR clearly identified (single bands confirmed with sequencing) 2 % positive Plasmodium samples including P. vivax, P. falciparum, Plasmodium malariae and Plasmodium ovale wallikeri.\ud \ud Conclusions: The COX-III single direct PCR is an alternative method for accurate detection of Plasmodium microscopic and submicroscopic infections in humans, especially when a large number of samples require screening. This PCR does not require DNA isolation, is sensitive, quick, produces confident/clear results, identifies all the Plasmodium species infecting humans, and is cost-effective.\u

    From contigs towards chromosomes: automatic improvement of long read assemblies (ILRA)

    Get PDF
    Recent advances in long read technologies not only enable large consortia to aim to sequence all eukaryotes on Earth, but they also allow individual laboratories to sequence their species of interest with relatively low investment. Long read technologies embody the promise of overcoming scaffolding problems associated with repeats and low complexity sequences, but the number of contigs often far exceeds the number of chromosomes and they may contain many insertion and deletion errors around homopolymer tracts. To overcome these issues, we have implemented the ILRA pipeline to correct long read-based assemblies. Contigs are first reordered, renamed, merged, circularized, or filtered if erroneous or contaminated. Illumina short reads are used subsequently to correct homopolymer errors. We successfully tested our approach by improving the genome sequences of Homo sapiens, Trypanosoma brucei, and Leptosphaeria spp., and by generating four novel Plasmodium falciparum assemblies from field samples. We found that correcting homopolymer tracts reduced the number of genes incorrectly annotated as pseudogenes, but an iterative approach seems to be required to correct more sequencing errors. In summary, we describe and benchmark the performance of our new tool, which improved the quality of novel long read assemblies up to 1 Gbp. The pipeline is available at GitHub: https://github.com/ThomasDOtto/ILRA

    A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    Get PDF
    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (~92%) and easily adapted to aid case management in the field and survey parasite migration worldwide

    A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains.

    Get PDF
    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (~92%) and easily adapted to aid case management in the field and survey parasite migration worldwide

    Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests

    Get PDF
    Background. Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods. The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results. Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions. The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation

    Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of concept

    Get PDF
    Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.PAHO [057-1-3144141]; COLCIENCIAS [ID 2229-405-20319]info:eu-repo/semantics/publishedVersio

    An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples.

    Get PDF
    MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination
    • …
    corecore