47 research outputs found

    Roadmap on quantum optical systems

    Get PDF
    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast- developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future

    A simulation of the Neolithic transition in Western Eurasia

    Full text link
    Farming and herding were introduced to Europe from the Near East and Anatolia; there are, however, considerable arguments about the mechanisms of this transition. Were it people who moved and outplaced the indigenous hunter- gatherer groups or admixed with them? Or was it just material and information that moved-the Neolithic Package-consisting of domesticated plants and animals and the knowledge of its use? The latter process is commonly referred to as cultural diffusion and the former as demic diffusion. Despite continuous and partly combined efforts by archaeologists, anthropologists, linguists, paleontologists and geneticists a final resolution of the debate has not yet been reached. In the present contribution we interpret results from the Global Land Use and technological Evolution Simulator (GLUES), a mathematical model for regional sociocultural development embedded in the western Eurasian geoenvironmental context during the Holocene. We demonstrate that the model is able to realistically hindcast the expansion speed and the inhomogeneous space-time evolution of the transition to agropastoralism in Europe. GLUES, in contrast to models that do not resolve endogenous sociocultural dynamics, also describes and explains how and why the Neolithic advanced in stages. In the model analysis, we uncouple the mechanisms of migration and information exchange. We find that (1) an indigenous form of agropastoralism could well have arisen in certain Mediterranean landscapes, but not in Northern and Central Europe, where it depended on imported technology and material, (2) both demic diffusion by migration or cultural diffusion by trade may explain the western European transition equally well, (3) [...]Comment: Accepted Author Manuscript version accepted for publication in Journal of Archaeological Science. A definitive version will be subsequently published in the Journal of Archaological Scienc

    Crystal structure of tarocystatin–papain complex: implications for the inhibition property of group-2 phytocystatins

    Get PDF
    Tarocystatin (CeCPI) from taro (Colocasia esculenta cv. Kaohsiung no. 1), a group-2 phytocystatin, shares a conserved N-terminal cystatin domain (NtD) with other phytocystatins but contains a C-terminal cystatin-like extension (CtE). The structure of the tarocystatin–papain complex and the domain interaction between NtD and CtE in tarocystatin have not been determined. We resolved the crystal structure of the phytocystatin–papain complex at resolution 2.03 Å. Surprisingly, the structure of the NtD–papain complex in a stoichiometry of 1:1 could be built, with no CtE observed. Only two remnant residues of CtE could be built in the structure of the CtE–papain complex. Therefore, CtE is easily digested by papain. To further characterize the interaction between NtD and CtE, three segments of tarocystatin, including the full-length (FL), NtD and CtE, were used to analyze the domain–domain interaction and the inhibition ability. The results from glutaraldehyde cross-linking and yeast two-hybrid assay indicated the existence of an intrinsic flexibility in the region linking NtD and CtE for most tarocystatin molecules. In the inhibition activity assay, the glutathione-S-transferase (GST)-fused FL showed the highest inhibition ability without residual peptidase activity, and GST-NtD and FL showed almost the same inhibition ability, which was higher than with NtD alone. On the basis of the structures, the linker flexibility and inhibition activity of tarocystatins, we propose that the overhangs from the cystatin domain may enhance the inhibition ability of the cystatin domain against papain

    Calibrating an interferometric laser frequency stabilization to megahertz precision

    No full text
    10.1364/AO.51.005517APPLIED OPTICS51225517-5521APOP
    corecore