529 research outputs found

    Reciprocal relationships in collective flights of homing pigeons

    Get PDF
    Collective motion of bird flocks can be explained via the hypothesis of many wrongs, and/or, a structured leadership mechanism. In pigeons, previous studies have shown that there is a well-defined hierarchical structure and certain specific individuals occupy more dominant positions --- suggesting that leadership by the few individuals drives the behavior of the collective. Conversely, by analyzing the same data-sets, we uncover a more egalitarian mechanism. We show that both reciprocal relationships and a stratified hierarchical leadership are important and necessary in the collective movements of pigeon flocks. Rather than birds adopting either exclusive averaging or leadership strategies, our experimental results show that it is an integrated combination of both compromise and leadership which drives the group's movement decisions.Comment: 7 pages, 5 figure

    Quantum symmetric pairs and representations of double affine Hecke algebras of type CCnC^\vee C_n

    Get PDF
    We build representations of the affine and double affine braid groups and Hecke algebras of type CCnC^\vee C_n, based upon the theory of quantum symmetric pairs (U,B)(U,B). In the case U=Uq(glN)U=U_q(gl_N), our constructions provide a quantization of the representations constructed by Etingof, Freund and Ma in arXiv:0801.1530, and also a type BCBC generalization of the results in arXiv:0805.2766.Comment: Final version, to appear in Selecta Mathematic

    Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons

    Get PDF
    Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell-types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using cell-type specific metabolic labelling of isolated neurites, we demonstrated that the processes of Glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation is a general property of neurons

    The switch-like expression of heme-regulated kinase 1 mediates neuronal proteostasis following proteasome inhibition

    Get PDF
    We examined the feedback between the major protein degradation pathway, the ubiquitin-proteasome system (UPS), and protein synthesis in rat and mouse neurons. When protein degradation was inhibited, we observed a coordinate dramatic reduction in nascent protein synthesis in neuronal cell bodies and dendrites. The mechanism for translation inhibition involved the phosphorylation of eIF2alpha, surprisingly mediated by eIF2alpha kinase 1, or heme-regulated kinase inhibitor (HRI). Under basal conditions, neuronal expression of HRI is barely detectable. Following proteasome inhibition, HRI protein levels increase owing to stabilization of HRI and enhanced translation, likely via the increased availability of tRNAs for its rare codons. Once expressed, HRI is constitutively active in neurons because endogenous heme levels are so low; HRI activity results in eIF2alpha phosphorylation and the resulting inhibition of translation. These data demonstrate a novel role for neuronal HRI that senses and responds to compromised function of the proteasome to restore proteostasis

    Employee Innovation in the Hospitality Industry: the Mediating Role of Psychological Safety

    Get PDF
    In the current turbulent and highly competitive environment, innovation can be considered a strategic weapon that enables hotels to survive, compete, and succeed. Innovation has been advocated to enhance hotels’ products, services, productions, processes, and overall performance. Innovation activities can take place as a result of employees’ behaviour, hence there is a call for greater attention to employees, in order to enhance hotel performance. Since innovation activities may involve uncertainty and risk, it is crucial to understand what makes employees feel safe, also referred to in literature as psychological safety, and encouraged to engage in the innovative behaviour. This conceptual paper presents an exploration of the factors that could encourage employee innovation in the hospitality industry. This relationship is supposedly mediated by psychological safety of the employees. The model propose seven essential elements that can promote innovative behaviour in the hospitality industry. Support and motivation from the management, high-quality relationships amongst members at work, autonomy, role expectation, and proactive personality, as an interpersonal trait, are all proposed to be positively associated with psychological safety and employee innovation, whereas openness to experiences and challenges at work are suggested to be positively associated only with employee innovation. Thus, understanding what promotes innovative behaviour will help hoteliers to cultivate and encourage the innovative behaviour amongst hotels’ employees, which can, in turn, enhance hotels’ services quality and performance

    The translatome of neuronal cell bodies, dendrites,and axons

    Get PDF
    To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength

    Multiple solutions to a magnetic nonlinear Choquard equation

    Full text link
    We consider the stationary nonlinear magnetic Choquard equation [(-\mathrm{i}\nabla+A(x))^{2}u+V(x)u=(\frac{1}{|x|^{\alpha}}\ast |u|^{p}) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}%] where A A\ is a real valued vector potential, VV is a real valued scalar potential,, N3N\geq3, α(0,N)\alpha\in(0,N) and 2(α/N)<p<(2Nα)/(N2)2-(\alpha/N) <p<(2N-\alpha)/(N-2). \ We assume that both AA and VV are compatible with the action of some group GG of linear isometries of RN\mathbb{R}^{N}. We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition u(gx)=τ(g)u(x)   for allgG,xRN, u(gx)=\tau(g)u(x)\text{\ \ \ for all}g\in G,\text{}x\in\mathbb{R}^{N}, where τ:GS1\tau:G\rightarrow\mathbb{S}^{1} is a given group homomorphism into the unit complex numbers.Comment: To appear on ZAM

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape
    corecore