If an augmented algebra K over Q is filtered by powers of its augmentation
ideal I, the associated graded algebra grK need not in general be quadratic:
although it is generated in degree 1, its relations may not be generated by
homogeneous relations of degree 2. In this paper we give a sufficient criterion
(called the PVH Criterion) for grK to be quadratic. When K is the group algebra
of a group G, quadraticity is known to be equivalent to the existence of a (not
necessarily homomorphic) universal finite type invariant for G. Thus the PVH
Criterion also implies the existence of such a universal finite type invariant
for the group G. We apply the PVH Criterion to the group algebra of the pure
virtual braid group (also known as the quasi-triangular group), and show that
the corresponding associated graded algebra is quadratic, and hence that these
groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies
corrected, reflecting suggestions made by the referee of the published
version of the pape