2,440 research outputs found

    Comparison of experimental and numerical sloshing loads in partially filled tanks

    Get PDF
    Sloshing phenomenon consists in the movement of liquids inside partially filled tanks, whichgenerates dynamic loads on the tank structure. Resulting impact pressures are of great importance in assessingstructural strength, and their correct evaluation still represents a challenge for the designer due to the highnonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of airtrapping. In the present paper a set of two-dimensional cases for which experimental results are available areconsidered to assess merits and shortcomings of different numerical methods for sloshing evaluation, namely twocommercial RANS solvers (FLOW-3D and LS-DYNA), and two own developed methods (Smoothed ParticleHydrodynamics and RANS). Impact pressures at different critical locations and global moment induced by watermotion for a partially filled tank with rectangular section having a rolling motion have been evaluated and resultsare compared with experiments

    Purinergic receptors in ocular inflammation

    Get PDF
    Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly 'tuned,' can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P(1),P(4)-diadenosine tetraphosphate (Ap4A), and P(1),P(5)-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation

    Measurement of the effect of Non Ionising Energy Losses on the leakage current of Silicon Drift Detector prototypes for the LOFT satellite

    Full text link
    The silicon drift detectors are at the basis of the instrumentation aboard the Large Observatory For x-ray Timing (LOFT) satellite mission, which underwent a three year assessment phase within the "Cosmic Vision 2015 - 2025" long-term science plan of the European Space Agency. Silicon detectors are especially sensitive to the displacement damage, produced by the non ionising energy losses of charged and neutral particles, leading to an increase of the device leakage current and thus worsening the spectral resolution. During the LOFT assessment phase, we irradiated two silicon drift detectors with a proton beam at the Proton Irradiation Facility in the accelerator of the Paul Scherrer Institute and we measured the increase in leakage current. In this paper we report the results of the irradiation and we discuss the impact of the radiation damage on the LOFT scientific performance.Comment: 21 pages, 7 figures, 2 tables. Accepted for publication by Journal of Instrumentation (JINST

    Radiation tests of the Silicon Drift Detectors for LOFT

    Full text link
    During the three years long assessment phase of the LOFT mission, candidate to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated and measured the radiation damage of the silicon drift detectors (SDDs) of the satellite instrumentation. In particular, we irradiated the detectors with protons (of 0.8 and 11 MeV energy) to study the increment of leakage current and the variation of the charge collection efficiency produced by the displacement damage, and we "bombarded" the detectors with hypervelocity dust grains to measure the effect of the debris impacts. In this paper we describe the measurements and discuss the results in the context of the LOFT mission.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    Demand forecasting: a case study in the food industry

    Get PDF
    The use of forecasting methods is nowadays regarded as a business ally since it supports both the operational and the strategic decision-making processes. This paper is based on a research project aiming the development of demand forecasting models for a company (designated here by PR) that operates in the food business, more specifically in the delicatessen segment. In particular, we focused on demand forecasting models that can serve as a tool to support production planning and inventory management at the company. The analysis of the company’s operations led to the development of a new demand forecasting tool based on a combination of forecasts, which is now being used and tested by the company.This work has been supported by FCT – Fundação para a CiĂȘncia e Tecnologia within the Project Scope: UID/CEC/00319/201

    Au/TiO2(110) interfacial reconstruction stability from ab initio

    Full text link
    We determine the stability and properties of interfaces of low-index Au surfaces adhered to TiO2(110), using density functional theory energy density calculations. We consider Au(100) and Au(111) epitaxies on rutile TiO2(110) surface, as observed in experiments. For each epitaxy, we consider several different interfaces: Au(111)//TiO2(110) and Au(100)//TiO2(110), with and without bridging oxygen, Au(111) on 1x2 added-row TiO2(110) reconstruction, and Au(111) on a proposed 1x2 TiO reconstruction. The density functional theory energy density method computes the energy changes on each of the atoms while forming the interface, and evaluates the work of adhesion to determine the equilibrium interfacial structure.Comment: 20 pages, 11 figure

    Design Rules for Laser‐Treated Icephobic Metallic Surfaces for Aeronautic Applications

    Get PDF
    Ice accretion on external aircraft surfaces due to the impact of supercooled water droplets can negatively affect the aerodynamic performance and reduce the operational capability and, therefore, must be prevented. Icephobic coatings capable of reducing the adhesion strength of ice to a surface represent a promising technology to support thermal or mechanical ice protection systems. Icephobicity is similar to hydrophobicity in several aspects and superhydrophobic surfaces embody a straightforward solution to the ice adhesion problem. Short/ultrashort pulsed laser surface treatments are proposed as a viable technology to generate superhydrophobic properties on metallic surfaces. However, it has not yet been verified whether such surfaces are generally icephobic under representative icing conditions. This study investigates the ice adhesion strength on Ti6Al4V, an alloy commonly used for aerospace components, textured by means of direct laser writing, direct laser interference patterning, and laser-induced periodic surface structures laser sources with pulse durations ranging from nano- to femtosecond regimes. A clear relation between the spatial period, the surface microstructure depth, and the ice adhesion strength under different icing conditions is investigated. From these observations, a set of design rules can be defined for superhydrophobic surfaces that are icephobic, too

    Measurement of Pion Enhancement at Low Transverse Momentum and of the Delta-Resonance Abundance in Si-Nucleus Collisions at AGS Energy

    Get PDF
    We present measurements of the pion transverse momentum (p_t) spectra in central Si-nucleus collisions in the rapidity range 2.0<y<5.0 for p_t down to and including p_t=0. The data exhibit an enhanced pion yield at low p_t compared to what is expected for a purely thermal spectral shape. This enhancement is used to determine the Delta-resonance abundance at freeze-out. The results are consistent with a direct measurement of the Delta-resonance yield by reconstruction of proton-pion pairs and imply a temperature of the system at freeze-out close to 140 MeV.Comment: 12 pages + 4 figures (uuencoded at end-of-file

    Time connectedness of fear

    Get PDF
    This paper examines the interconnection between four implied volatility indices representative of the investors' consensus view of expected stock market volatility at different maturities during the period January 3, 2011-May 4, 2018. To this end, we first perform a static analysis to measure the total volatility connectedness in the entire period using a framework proposed by Diebold and Yilmaz (2014). Second, we apply a dynamic analysis to evaluate both the net directional connectedness for each market using the TVP-VAR connectedness approach developed by Antonakakis and Gabauer (2017). Our results suggest that a 72.27%, of the total variance of the forecast errors is explained by shocks across the examined investor time horizons, indicating that the remainder 27.73% of the variation is due to idiosyncratic shocks. Furthermore, we find that volatility connectedness varies over time, with a surge during periods of increasing economic and financial instability. Finally, we also document a superior performance of the TVP-VAR approach to connectedness respect to the original one proposed by Diebold and Yilmaz (2014
    • 

    corecore