35 research outputs found

    Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ascochyta blight, caused by <it>Mycosphaerella pinodes </it>is one of the most important pea pathogens. However, little is known about the genes and mechanisms of resistance acting against <it>M. pinodes </it>in pea. Resistance identified so far to this pathogen is incomplete, polygenic and scarce in pea, being most common in <it>Pisum </it>relatives. The identification of the genes underlying resistance would increase our knowledge about <it>M. pinodes-</it>pea interaction and would facilitate the introgression of resistance into pea varieties. In the present study differentially expressed genes in the resistant <it>P. sativum </it>ssp. <it>syriacum </it>accession P665 comparing to the susceptible pea cv. Messire after inoculation with <it>M. pinodes </it>have been identified using a <it>M. truncatula </it>microarray.</p> <p>Results</p> <p>Of the 16,470 sequences analysed, 346 were differentially regulated. Differentially regulated genes belonged to almost all functional categories and included genes involved in defense such as genes involved in cell wall reinforcement, phenylpropanoid and phytoalexins metabolism, pathogenesis- related (PR) proteins and detoxification processes. Genes associated with jasmonic acid (JA) and ethylene signal transduction pathways were induced suggesting that the response to <it>M. pinodes </it>in pea is regulated via JA and ET pathways. Expression levels of ten differentially regulated genes were validated in inoculated and control plants using qRT-PCR showing that the P665 accession shows constitutively an increased expression of the defense related genes as peroxidases, disease resistance response protein 39 (DRR230-b), glutathione S-transferase (GST) and 6a-hydroxymaackiain methyltransferase.</p> <p>Conclusions</p> <p>Through this study a global view of genes expressed during resistance to <it>M. pinodes </it>has been obtained, giving relevant information about the mechanisms and pathways conferring resistance to this important disease. In addition, the <it>M. truncatula </it>microarray represents an efficient tool to identify candidate genes controlling resistance to <it>M. pinodes </it>in pea.</p

    Verzeichnis der Veröffentlichungen Friedrich Niebergalls .

    No full text

    Über die Störungen der Stimme und Sprache

    No full text

    A. Kanaan im 2. Jahrtausend

    No full text
    corecore