137 research outputs found

    Faunal composition, diversity and spatial heterogeneity of the arboreal arthropod community in a temperate rainforest canopy, New Zealand

    Get PDF
    The composition, diversity and spatial heterogeneity of forest canopy arthropods was examined for the first time in New Zealand at 15 sites in the Blue Duck Scientific Reserve, Kaikoura. Arboreal arthropods were sampled using flight intercept traps suspended in tree canopies in three distinguishable habitat types: beech (Fagaceae), podocarp (Podocarpaceae) and tawa (Lauraceae). Variations in arthropod composition, species diversity, faunal similarity and community structure were assessed relative to habitat type, tree species and site microenvironmental conditions. Community composition was in many respects atypical of the 'known' arthropod fauna of New Zealand. Diptera dominated the fauna in terms of both abundance and number of species, whilst the relative proportions of Lepidoptera and Coleoptera were disproportionately low. Examining species composition, it was found that selected families and genera were unexpectedly well represented relative to their importance in the described New Zealand fauna. Mycetophilidae dominated the dipteran fauna, with 100 recognized taxonomic units, equivalent to 56% of the known mycetophilid fauna of New Zealand. A large number of undescribed species were identified in the genera Pwvicellula, Mycetophila, Exechia, Cycloneura and Tetragoneura. Ten new species are described from the genus Tetragoneura (Diptera: Mycetophilidae). I believe that the exceptionally high densities, habitat specificity and abundance of new species within these mycetophilid genera reflects their specialization for life in the upper canopy. Many large coleopteran families were poorly represented in the canopy (e.g. Byrrhidae, Carabidae, Pselaphidae, Elateridae and Chrysomelidae ). Only Coccinellidae were exceptionally well represented. Arboreal Coleoptera were generally poorly sampled. Despite these differences in arthropod composition, the New Zealand arboreal fauna showed strong affinities with other temperate canopy faunas, including: high population densities of dominant species,abundant non-insect predators and low proportions of ants. Species diversity was heavily influenced by variation in habitat type. Coleoptera and Diptera were more diverse and abundant in beech than in either podocarp or tawa habitats. Variation in species diversity did not correlate with tree species or canopy architecture. The principle cause of high arthropod abundance in beech sites was the attraction of the honeydew secretions of the sooty beech scale (Ultracoelostoma assimile, Hemiptera: Margarodidae ), while the principle cause of variations in species diversity could not be conclusively isolated from the influences of honeydew secretions and forest edge effects. The influence of 'mass effects' (sensu Schmida & Wilson 1985) increased a diversity in areas adjacent to beech forest due to species influx. Measurement of faunal similarity using Grassle & Smith's (1976) Cm index showed that while species composition in beech and non-beech habitats was relatively unique, tawa habitat was not distinct from podocarp habitat and each host-tree did not act as a distinct sub-habitat. Fauna! similarity between tree crowns was greatest for highly vagile Diptera, whereas Coleoptera showed a higher degree of habitat fidelity and conservative internal site variability. Despite the poor influence of tree species and site structure on arthropod community composition, DECORANA ordination and TWINSPAN site classification showed that a characteristic subset of arthropods was associated with each tree species, and in fact the arthropod communities in beech, matai, rimu, totara and tawa trees were distinguishable, structured entities within larger habitat units

    Evidence of Range Shifts in Riparian Plant Assemblages in Response to Multidecadal Streamflow Declines

    Get PDF
    Riparian corridors are thought to form hydrological refugia that may buffer species and communities against regional climate changes. In regions facing a warming and drying climate, however, the hydrological regime driving riparian communities is also under threat. We examined recruitment in response to streamflow declines for species inhabiting the riparian zone in southwest Western Australia, testing the extent to which the riparian system has buffered riparian communities from the drying climate. We stratified 49 vegetation transects across the >600 mm per annum regional rainfall gradient encompassed by the Warren River Catchment. Local hydrological conditions were estimated over two 10-year periods; 1980–1989, and 2001–2010, to quantify changes in the flood regime. Mixed effects models tested the relationship between rainfall and flooding on the relative frequency of immature to mature individuals of 17 species of trees and shrubs common to the riparian zones. At the low-rainfall extent of their geographic range, the relative frequency of immature riparian species decreased with declining flow, whereas at the high-rainfall extent of their geographic range the relative frequency of immature individuals increased with declining flow. These results suggest that the geographic ranges of riparian species may be contracting at the low-rainfall margin of their range, while at the high-rainfall margin of their geographic range, reduced flooding regimes appear to be opening up new habitat suitable for recruitment and narrowing the river corridor. No such patterns were observed in upland species, suggesting the river may be buffering upland species. We discuss these findings and their implications for ongoing management and species conservation in a region projected to face further, significant rainfall declines

    Non-random food-web assembly at habitat edges increases connectivity and functional redundancy

    Get PDF
    Abstract Habitat fragmentation dramatically alters the spatial configuration of landscapes, with the creation of artificial edges affecting community structure and dynamics. Despite this, it is not known how the different food webs in adjacent habitats assemble at their boundaries. Here we demonstrate that the composition and structure of herbivore-parasitoid food webs across edges between native and plantation forests are not randomly assembled from those of the adjacent communities. Rather, elevated proportions of abundant, interaction-generalist parasitoid species at habitat edges allowed considerable interaction rewiring, which led to higher linkage density and less modular networks, with higher parasitoid functional redundancy. This was in spite of high overlap in host composition between edges and interiors. We also provide testable hypotheses for how food webs may assemble between habitats with lower species overlap. In an increasingly fragmented world, non-random assembly of food webs at edges may increasingly affect community dynamics at the landscape level

    Using landscape history to predict biodiversity patterns in fragmented landscapes

    Get PDF
    Landscape ecology plays a vital role in understanding the impacts of land-use change on biodiversity, but it is not a predictive discipline, lacking theoretical models that quantitatively predict biodiversity patterns from first principles. Here, we draw heavily on ideas from phylogenetics to fill this gap, basing our approach on the insight that habitat fragments have a shared history. We develop a landscape ‘terrageny’, which represents the historical spatial separation of habitat fragments in the same way that a phylogeny represents evolutionary divergence among species. Combining a random sampling model with a terrageny generates numerical predictions about the expected proportion of species shared between any two fragments, the locations of locally endemic species, and the number of species that have been driven locally extinct. The model predicts that community similarity declines with terragenetic distance, and that local endemics are more likely to be found in terragenetically distinctive fragments than in large fragments. We derive equations to quantify the variance around predictions, and show that ignoring the spatial structure of fragmented landscapes leads to over-estimates of local extinction rates at the landscape scale. We argue that ignoring the shared history of habitat fragments limits our ability to understand biodiversity changes in human-modified landscape

    Is habitat fragmentation good for biodiversity?

    Get PDF
    Habitat loss is a primary threat to biodiversity across the planet, yet contentious debate has ensued on the importance of habitat fragmentation ‘per se’ (i.e., altered spatial configuration of habitat for a given amount of habitat loss). Based on a review of landscape-scale investigations, Fahrig (2017; Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics 48:1-23) reports that biodiversity responses to habitat fragmentation ‘per se’ are more often positive rather than negative and concludes that the widespread belief in negative fragmentation effects is a ‘zombie idea’. We show that Fahrig's conclusions are drawn from a narrow and potentially biased subset of available evidence, which ignore much of the observational, experimental and theoretical evidence for negative effects of altered habitat configuration. We therefore argue that Fahrig's conclusions should be interpreted cautiously as they could be misconstrued by policy makers and managers, and we provide six arguments why they should not be applied in conservation decision-making. Reconciling the scientific disagreement, and informing conservation more effectively, will require research that goes beyond statistical and correlative approaches. This includes a more prudent use of data and conceptual models that appropriately partition direct vs indirect influences of habitat loss and altered spatial configuration, and more clearly discriminate the mechanisms underpinning any changes. Incorporating these issues will deliver greater mechanistic understanding and more predictive power to address the conservation issues arising from habitat loss and fragmentation

    Establishment success of sooty beech scale insects, Ultracoelostoma sp., on different host tree species in New Zealand

    Get PDF
    The sooty beech scale insect (Ultracoelostoma sp.) (Hemiptera: Margarodidae) exhibits a highly patchy distribution at local and regional scales. A major factor driving this common distributional phenomenon in other phloem-feeding insects is aggregation and local adaptation. The aim of this study was to determine if Ultracoelostoma was locally adapted to its natal host trees, by contrasting the establishment rates of first instar “crawlers” in reciprocal transfers to natal versus novel hosts. Although there are two closely-related species of sooty beech scale insect, the morphological characters of crawlers in this study were intermediate between those of U. assimile and U. brittini. However, all of the voucher specimens examined had consistent morphology, indicating that they belong to one species which we refer to as Ultracoelostoma sp. Reciprocal transfers of crawlers were carried out between individual red beech (Nothofagus fusca), as well as between mountain beech (N. solandri) and red beech trees, to ascertain if insects had become locally adapted to their individual host tree or to host species. In total, 480 crawlers were placed in enclosures on their natal and novel host trees, of which only 32 (6.7 %) became established. No evidence for local adaptation, either to individual host trees or to host tree species, was found. There was also no difference in crawler establishment between natal and novel hosts. However, crawlers originating from mountain beech trees had significantly higher establishment rates on both natal mountain beech and novel red beech hosts, than did crawlers originating from red beech trees. The superior ability of mountain beech crawlers to become established, even on novel red beech trees, suggests that scale insects on mountain beech trees have higher individual fitness (possibly due to maternal effects mediated by differences in host nutritional quality, defensive compounds or growth rate). This increased fitness may result in crawlers being better provisioned to search for appropriate establishment sites. The results of this study indicate that beech scale insects perform better on mountain beech at this site, although crawlers did not preferentially establish on mountain beech

    Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle

    Get PDF
    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date moststudies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/ litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods

    Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle

    Get PDF
    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods1012CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQSolVin-Solvay SA; Smithsonian Institution; Smithsonian Tropical Research Institute; United Nations Environment Programme; Smithsonian Institution; Smithsonian National Museum of Natural History; European Science Foundation (ESF); Global Canopy Programme; Czech Science foundation GACR grant; European Social Fund (ESF); Ministry of Education, Youth & Sports - Czech Republic; French National Research Agency (ANR); Research Council of Norway; Grant Agency of the Czech Republi
    corecore