92 research outputs found

    The Modern History of Global Food

    Get PDF
    Can we trace the long history of globalization through the movement of foods around the world? History students Leland Cook, Margaret Dickinson, Natalie Fulk, and Noah Switalski will share their insights from collaborative research with Dr. Lauren Janes during the summer of 2016. Each global food--potatoes, sugar, curry, and rice--tells a story of connectivity across continents and cultures, showing how our lives, diets, and economies were shaped by centuries of meaningful interactions around food

    Graphene Oxide Reduces the Hydrolytic Degradation in Polyamide-11

    Get PDF
    Graphene oxide (GO) was incorporated into polyamide-11 (PA11) via in-situ polymerization. The GO-PA11 nano-composite had elevated resistance to hydrolytic degradation. At a loading of 1 mg/g, GO to PA11, the accelerated aging equilibrium molecular weight of GO-PA11 was higher (33 and 34 kg/mol at 100 and 120 C, respectively) compared to neat PA11 (23 and 24 kg/mol at 100 and 120 C, respectively). Neat PA11 had hydrolysis rate constants (kH) of 2.8 and 12 ( 10(exp -2) day(exp -1)) when aged at 100 and 120 C, respectively, and re-polymerization rate constants (kP) of 5.0 and 23 ( 10(exp -5) day(exp -1)), respectively. The higher equilibrium molecular weight for GO-PA11 loaded at 1 mg/g was the result of a decreased kH, 1.8 and 4.5 ( 10(exp -2) day(exp -1)), and an increased kP, 10 and 17 ( 10(exp -5) day(exp -1)) compared with neat PA11 at 100 and 120 C, respectively. The decreased rate of degradation and resulting 40% increased equilibrium molecular weight of GO-PA11 was attributed to the highly asymmetric planar GO nano-sheets that inhibited the molecular mobility of water and the polymer chain. The crystallinity of the polymer matrix was similarly affected by a reduction in chain mobility during annealing due to the GO nanoparticles' chemistry and highly asymmetric nano-planar sheet structure

    A framework to explore micronutrient deficiency in maternal and child health in Malawi, Southern Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global food insecurity is associated with micronutrient deficiencies and it has been suggested that 4.5 billion people world-wide are affected by deficiencies in iron, vitamin A and iodine. Zinc has also been identified to be of increasing concern. The most vulnerable are young children and women of childbearing age. A pilot study has been carried out in Southern Malawi, to attempt to link the geochemical and agricultural basis of micronutrient supply through spatial variability to maternal health and associated cultural and social aspects of nutrition. The aim is to establish the opportunity for concerted action to deliver step change improvements in the nutrition of developing countries.</p> <p>Results</p> <p>Field work undertaken in August 2007 and July/August 2008 involved the collection of blood, soil and crop samples, and questionnaires from ~100 pregnant women. Complex permissions and authorisation protocols were identified and found to be as much part of the cultural and social context of the work as the complexity of the interdisciplinary project. These issues are catalogued and discussed. A preliminary spatial evaluation is presented linking soil quality and food production to nutritional health. It also considers behavioural and cultural attitudes of women and children in two regions of southern Malawi, (the Shire Valley and Shire Highlands plateau). Differences in agricultural practice and widely varying soil quality (e.g. pH organic matter, C/N and metal content) were observed for both regions and full chemical analysis of soil and food is underway. Early assessment of blood data suggests major differences in health and nutritional status between the two regions. Differences in food availability and type and observations of life style are being evaluated through questionnaire analysis.</p> <p>Conclusion</p> <p>The particular emphasis of the study is on the interdisciplinary opportunities and the barriers to progress in development support in subsistence communities. Engaging at the community level and the balance of expectations from both study subjects and research team highlight the merit of careful and detailed planning and project delivery.</p

    Paternal diet impairs F1 and F2 offspring vascular function through sperm and seminal plasma specific mechanisms in mice

    Get PDF
    Although the impact of maternal diet on adult offspring health is well characterized, the role that a father's diet has on his offspring's health remains poorly defined. We establish the significance of a sup-optimal paternal low protein diet for offspring vascular homeostasis and define the sperm and seminal plasma specific programming effects on cardiovascular health. Male C57BL6 mice were fed either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a minimum of 7 weeks. Using artificial insemination, in combination with vasectomized male mating, we generated offspring derived from either NPD or LPD sperm (devoid of seminal plasma) but in the presence of NPD or LPD seminal plasma (devoid of sperm). We observed that either LPD sperm or seminal fluid at conception impaired adult offspring vascular function in response to both vasoconstrictors and dilators. Underlying these changes in vascular function were significant changes in serum, lung and kidney angiotensin-converting enzyme (ACE) activity, established in F1 offspring from 3 weeks of age, maintained into adulthood and present also within juvenile F2 offspring. Furthermore, we observed differential expression of multiple central renin-angiotensin system regulators in adult offspring kidneys. Finally, paternal diet modified the expression profiles of central epigenetic regulators of DNA methylation, histone modifications and RNA methylation in adult F1 male testes. These novel data reveal the impact of sub-optimal paternal nutrition on offspring cardiovascular well-being, programming offspring cardiovascular function through both sperm and seminal plasma specific mechanisms over successive generations

    Scary Barbie: An Extremely Energetic, Long-Duration Tidal Disruption Event Candidate Without a Detected Host Galaxy at z = 0.995

    Full text link
    We report multi-wavelength observations and characterization of the ultraluminous transient AT 2021lwx (ZTF20abrbeie; aka ``Barbie'') identified in the alert stream of the Zwicky Transient Facility (ZTF) using a Recommender Engine For Intelligent Transient Tracking (REFITT) filter on the ANTARES alert broker. From a spectroscopically measured redshift of 0.995, we estimate a peak observed pseudo-bolometric luminosity of log (Lmax/[erg/s]_{\text{max}} / [\text{erg}/\text{s}]) = 45.7 from slowly fading ztf-g\it{g} and ztf-rr light curves spanning over 1000 observer-frame days. The host galaxy is not detected in archival Pan-STARRS observations (g>23.3g > 23.3 mag), implying a lower limit to the outburst amplitude of more than 5 mag relative to the quiescent host galaxy. Optical spectra from Lick and Keck Observatories exhibit strong emission lines with narrow cores from the H Balmer series and ultraviolet semi-forbidden lines of Si III] λ\lambda1892, C III] λ\lambda1909, and C II] λ\lambda2325. Typical nebular lines in AGN spectra from ions such as [O II] and [O III] are not detected. These spectral features, along with the smooth light curve that is unlike most AGN flaring activity, and the luminosity that exceeds any observed or theorized supernova, lead us to conclude that AT 2021lwx is most likely an extreme tidal disruption event (TDE). Modeling of ZTF photometry with MOSFiT suggests that the TDE was between a ≈14M⊙\approx 14 M_{\odot} star and a supermassive black hole of mass MBH∼M_{\text{BH}} \sim 108M⊙10^{8} M_{\odot}. Continued monitoring of the still-evolving light curve along with deep imaging of the field once AT 2021lwx has faded can test this hypothesis and potentially detect the host galaxy.Comment: 15 pages, 4 figures, 1 Table; Version as published in The Astrophysical Journal Letters. Observations of AT 2021lwx published in the paper can be found at https://bsubraya.github.io/research

    Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men

    Get PDF
    Maximizing anabolic responses to feeding and exercise is crucial for muscle maintenance and adaptation to exercise training. We hypothesized that enriching a protein drink with leucine would improve anabolic responses to resistance exercise (RE: 6×8 knee-extension repetitions at 75% of 1-RM) in both young and older adults. Groups (n=9) of young (24±6 y, BMI 23±2kg.m-2) and older men (70±5 y, BMI 25±2 kg.m-2) were randomized to either: (i) RE followed by Slim-Fast Optima (SFO 10 g PRO; 24 g CHO) with 4.2 g of leucine (LEU) or, (ii) RE+SFO with 4.2 g of alanine (ALA; isonitrogenous control). Muscle biopsies were taken before, immediately after, and 1, 2 and 4 h after RE and feeding. Muscle protein synthesis (MPS) was measured by incorporation of [1, 2-13C2] leucine into myofibrillar proteins and the phosphorylation of p70S6K1 by immunoblotting. In young men, both area under the curve (AUC; FSR 0-4 h P<0.05) and peak FSR (0.11 vs. 0.08%.h.-1; P<0.05) were greater in the SFO+LEU than in the SFO+ALA group, after RE. Similarly, in older men, AUC analysis revealed that post-exercise anabolic responses were greater in the SFO+LEU than SFO+ALA group, after RE (AUC; FSR 0-4 h P<0.05). Irrespective of age, increases in p70S6K1 phosphorylation were evident in response to both SFO+LEU and SFO+ALA, although greater with leucine supplementation than alanine (fold-change 2.2 vs. 3.2; P<0.05), specifically in the older men. We conclude that addition of Leucine to a sub-maximal PRO bolus improves anabolic responses to RE in young and older men
    • …
    corecore