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Abstract: Household air pollution from the combustion of solid fuels is a leading global health
and human rights concern, affecting billions every day. Instrumentation to assess potential solutions
to this problem faces challenges—especially related to cost. A low-cost ($159) particulate matter tool
called the Household Air Pollution Exposure (HAPEx) Nano was evaluated in the field as part of
the Prices, Peers, and Perceptions cookstove study in northern Ghana. Measurements of temperature,
relative humidity, absolute humidity, and carbon dioxide and carbon monoxide concentrations
made at 1-min temporal resolution were integrated with 1-min particulate matter less than 2.5
microns in diameter (PM2.5) measurements from the HAPEx, within 62 kitchens, across urban
and rural households and four seasons totaling 71 48-h deployments. Gravimetric filter sampling
was undertaken to ground-truth and evaluate the low-cost measurements. HAPEx baseline drift
and relative humidity corrections were investigated and evaluated using signals from paired
HAPEx, finding significant improvements. Resulting particle coefficients and integrated gravimetric
PM2.5 concentrations were modeled to explore drivers of variability; urban/rural, season, kitchen
characteristics, and dust (a major PM2.5 mass constituent) were significant predictors. The high
correlation (R2 = 0.79) between 48-h mean HAPEx readings and gravimetric PM2.5 mass (including
other covariates) indicates that the HAPEx can be a useful tool in household energy studies.

Keywords: particulate matter; low-cost sensors; cooking; particle coefficients; household pollution;
gravimetric filter

1. Introduction and Background

Pollution from the inefficient combustion of biomass is a global environmental health concern.
The global burden of disease linked more deaths and disability adjusted life years (DALYs) attributable
to household air pollution (HAP) from solid fuels than from unimproved water and sanitation [1].
HAP from solid fuels is the number one risk of morbidity in south Asia, and the third highest risk
globally. Particulate matter (PM) emissions are a principal component of solid biomass combustion
and exposure to PM less than 2.5 microns in diameter (PM2.5) is linked to adverse health outcomes
including increased risk of acute lower respiratory infections, chronic obstructive pulmonary disease,
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stroke, and cardiovascular and circulatory diseases [2–4]. Interventions tried addressing this issue by
replacing traditional, unvented biomass stoves used for cooking and home heating with varying degrees
of success. Air pollution monitoring and exposure assessments of proposed solutions to this challenge
confront many obstacles, with suitable, cost-effective instrumentation being one [5,6]. Typical solid fuel
HAP research settings invoke an array of sampling constraints including cost, power consumption,
physical form factor (i.e., size and weight), accuracy, precision, durability, dynamic sensing range,
and user-compatibility. Low-cost sensors are becoming ubiquitous in efforts to increase spatiotemporal
information in HAP exposure assessments [7]. Particulate sensors are among the most pursued due to
the well-studied links between that constituent and adverse health outcomes. However, many PM
monitoring instruments cost between 500 and 10,000 United States dollars (USD) and require substantial
technical skills and laboratory support, limiting the scope or consideration of air quality assessments,
an integral component of evaluating HAP interventions [8]. Time-resolved measurements of PM
yield a wealth of information that cumulative measurements lack, and they can play a vital role
in discerning exposure from a multitude of sources beyond cooking and heating. Research groups
assessing the impacts of HAP-related interventions can more precisely link pollution events tied to
specific activities to intervention treatments through the integration of contemporaneously measured
data on short time scales [9]. Understanding the quality of these measurements is important.

PM monitors based on the measurement of light scattering can address several HAP
research-related constraints. These sensors were extensively evaluated in the laboratory, but less so in
the field [5,7,10–12]. Briefly, these monitors operate by emitting light that interacts with particles in
a sensing region and by measuring changes in incident light on a photodetector. Relationships are
commonly developed to characterize these photoelectric changes with mass concentrations among other
varying particle properties (i.e., reflectivity, shape, number, size, density, and chemistry). These sensors
are typically linearly calibrated for a given PM mixture with a sensitivity (response per µg·m−3)
and an offset (response in clean air). Because these sensors indirectly measure mass, they require
collocations with a pump-and-filter gravimetric standard with which to ground time-resolved readings.
Resource (e.g., cost and time) savings can be realized when a subset of total measurements includes
low-cost and gravimetric samples. For example, The Gold Standard, a certification entity for climate
and development initiatives, requires a correlation of at least 0.75 between 24-h gravimetric and optical
monitor measurements for exposure assessments acknowledging variation among site-specific factors
(e.g., fuel, stove type, cooking practices, household characteristics, season, etc.) [13]. Standards like
these simultaneously hold low-cost tools to certain benchmarks yet allow research groups to tailor
instrumentation to their research needs/limitations.

The Prices, Peers, and Perceptions (P3) study was conducted in the Kassena-Nankana District
(KND) of northern Ghana between late 2016 and early 2019. The purpose of the study was to examine
households’ demand for and the impacts of improved cookstoves. Specifically, we conducted two sets
of stove price experiments in the rural and urban areas of the KND. The P3 Bio study enrolled 293
rural households and offered them two types of improved biomass cookstoves (the Greenway Jumbo
and the ACE1 stove) at prices that were randomized at the group (cluster) level [14].

Meanwhile, the P3 Gas study enrolled a second set of 262 urban households, and offered each
participant a set of liquefied petroleum gas (LPG) stove-fuel packages. In both arms, a key aim of
the study was to examine variation in household air pollution, particularly PM2.5, across groups
over time. Thus, developing methods to measure PM2.5 concentrations accurately in household
cooking areas and for personal exposure was a central focus of our research activities. This paper
describes these methods, focusing on comparisons of the performance of low-cost optical sensors with
gravimetric benchmarks.

One of our main research objectives utilizing the low-cost monitors was to characterize elevations
in PM2.5 concentrations above background levels to gain a better understanding of the sources of
such deviations. Ambient concentrations of PM2.5 in our study region, albeit relatively moderate
as measured by others in this region [15], have potential significant overall health implications
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and would not be well captured by the low-cost monitors. Rather, our use of the low-cost monitors
draws the much-needed attention to understanding the magnitudes and sources contributing most to
increases in PM2.5 concentrations known to have detrimental health effects, those from nearby sources.

We report a total of 62 48-h cumulative PM2.5 gravimetric mass concentrations and constituents
(elemental carbon [EC], organic carbon [OC], etc.) from 60 urban and rural kitchens in northern
Ghana. This work makes four main contributions to the literature on existing low-cost PM
monitoring. Firstly, we introduce and evaluate a simple, yet promising post-collection baseline
drift correction algorithm and two signal filters to automate quality control of low-cost monitor data.
Secondly, we generate a relative humidity correction described by data provided by Wang et al. [16] for
an optical PM sensor and apply it, as well as other corrections found in the literature. Thirdly, we present
comparisons of mean low-cost readings to gravimetrically measured PM2.5 mass concentrations.
Fourthly, we model particle coefficient and total PM2.5 mass concentrations with co-measured
environmental variables (e.g., CO, CO2, temperature, humidity, EC, OC, etc.), season, urban/rural
kitchen classifications, and kitchen characteristics to explain additional variation and explore differences
among predictors. Total PM2.5 mass concentration is modeled without filter-based information to
simulate performance without gravimetric standards.

2. Materials and Methodology

2.1. Low-Cost PM Tool Selection

Several PM monitors were considered for use in the P3 study. We ultimately chose the Household
Air Pollution Exposure (HAPEx) Nano (v.3) monitor based on lab and field performance of the housed
optical sensor [16–19] and the integrated sensor platform [20–23], as well as cost, size, and low
power consumption.

The HAPEx Nano PM monitor (v3. 159 USD, Climate Solutions Consulting, USA) incorporates
the Sharp GP2Y1010 optical sensor (<20 USD), an accelerometer, a microprocessor, and a lithium
battery in a small physical form factor (90 × 28 × 50 mm) to passively monitor PM concentrations
at user-selected time intervals for up to three years [22]. It was the most affordable tool ($159)
at the time we began our study and since decreased in price ($119) while showing promising results in
the field [20,21,23] and performing well in the lab [23].

Briefly, the HAPEx Nano’s optical sensor (Sharp GP2Y1010) involves a pulsed infrared
light-emitting diode (IR-LED, 860–950 nm) and a phototransistor positioned at an angle creating
a 60-degree forward-scattering measurement of illuminated particles within the sensing pathway.
The HAPEx Nano has no forced air flow or inlet selection mechanism, relying rather upon diffusion
and/or natural convection of suspended particles through the sensing pathway. The settings are
user-defined via a personal computer (PC) software interface. They were reported to be most sensitive
to PM with aerodynamic diameter between 1 and 3 µm [20].

NexLeaf Analytics was funded by the World Bank to perform laboratory and field evaluations
of several low-cost PM monitoring tools, including the HAPEx Nano and Particle and Temperature
Sensor Plus (PATS+) (Berkeley Air Monitoring Group, USA), in an effort to identify and assess
the performance of commercially available off-the-shelf PM sensing platforms for large-scale
implementation [23]. The lab tests (nHAPEx = 8) involved collocating low-cost monitors inside
a custom mixing chamber alongside a GRIMM optical particle counter (OPC) and a gravimetric
pump and filter sampler, while exposed to wood-burning emissions at 12 distinct PM2.5 mass
concentration levels (426–6232 µg·m−3). The resulting linear regression coefficient of determination (R2)
between HAPEx and gravimetric measurements was 0.80 with an overall particle correction coefficient
of 5.68 (PM2.5 µg·m−3/HAPEx reading) and intercept of 69 µg·m−3. Linearity between the HAPEx
monitor and the OPC was quite high (R2 = 0.99). The field evaluation involved collocating the low-cost
sensor modules with gravimetric pump and filters within biomass-burning kitchens in the Odisha region
of India over one season (nHAPEx = 18). Three sampling time comparisons were employed (18–22 hourly,
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7–8 hourly, and 2–4 hourly) to capture a wider range of cumulative average PM2.5 concentrations
(95–6124 µg·m−3). Resulting regressions showed high linearity (R2 = 0.75) eligible for Gold Standard
certification and an overall particle correction coefficient of 0.22 (HAPEx reading/PM2.5 µg·m−3).

The Sharp GP2Y1010, 1–3 orders of magnitudes lower in cost than benchmarked nephelometers
and photometers [24], was well described and optical properties rigorously characterized in
a laboratory setting [17]. Wang and co-workers found high linearity (R2

≥ 0.98, 0–1 mg·m−3)
against SidePak-measured PM2.5 concentrations and high precision among other Sharp sensors without
convective flow [16]. They also characterized lower detection limits, as well as particle size, composition,
relative humidity, and temperature effects on the raw signal output, finding high dependence on
several factors.

Budde and colleagues performed lab testing of the Sharp GP2Y1010 alongside the TSI DustTrak
DRX Aerosol Monitor 8533 (~9000 USD) in a non-controlled indoor environment, finding mean absolute
errors (MAE) of 20 µg·m−3 using 5-min paired readings over a range of 0–150 µg·m−3 [24]. They also
found that time-averaging above 5 min did not drastically improve agreement between the Sharp
and the TSI instrument. One-minute comparisons did have relatively larger MAE (20–50 µg·m−3).

Berkeley Air Monitoring Group commercially packaged Sharp’s more precise sister sensor,
the GP2Y1014, into the PATS+ (~500 USD), which operates on the same optical measurement principles
but which utilizes custom firmware advances to more precisely control current that drives the IR-LED
at two distinct intensities, giving way to two separate measurement sensitivity domains and, thus,
measurement ranges [7]. Laboratory testing of the PATS+ collocated with a gravimetrically adjusted
TSI DustTrak II Aerosol Monitor 8530 inside a controlled chamber resulted in high linear agreement
(R2
≥ 0.99) at both sensitivity domains (0–5 and 0–40 mg·m−3) for 15-min mean values. When deployed

alongside gravimetric samplers in wood-burning Guatemalan kitchens for 48 h, the PATS+ mean
PM2.5 concentration estimates showed strong correlation with integrated gravimetric PM2.5 (R2 = 0.9)
over a range of about 650 µg·m−3, showing promise of sensing capabilities in estimating field-based
multi-day kitchen area concentrations at the low–mid-cost range [7].

2.2. Household Measurements

Microenvironment sampling took place in a subset of P3 Bio and Gas households enrolled in
exposure measurements [14], between September 2017 and March 2019. The ongoing sampling
generally took place within two 48-h deployment periods weekly; the first deployment period was
Monday to Wednesday and the second was Wednesday morning to Friday morning. The sampling
apparatus consisted of three main parts: a custom low-cost environmental monitor called the G-Pod,
a set of gravimetric pump and filter trains, and a pair of HAPEx loggers. The apparatus was positioned
at a height of 1.5 m, 1 m from the most used cooking location according to the primary cook during
that time of year (Figure 1).

2.2.1. The G-Pod (Continuous Gas Phase Measurements)

The G-Pod is a modified U-Pod sensor platform designed and built by the University of Colorado,
Boulder’s Hannigan Air Quality and Technology Research Lab (mobilesensingtechnology.com; https:
//www.colorado.edu/lab/hannigan), used extensively in air quality research applications [9,14,25–41].
The G-Pod represents a version of a fleet of second-generation U-Pods with the capacity to
measure carbon monoxide (electrochemical CO-B4; Alphasense, UK), nitrogen oxides (electrochemical
NO2-B4 and NO-B4; Alphasense, UK), ozone (metal oxide MICS-2611, SGX, Switzerland, formerly
MicroChemical Systems SA), carbon dioxide (nondispersive infrared S-300; ELT, Korea), volatile organic
compounds (metal oxide 2600, 2601; Figaro, USA), temperature and humidity (capacitive and band
gap SHT25; Sensirion AG, Switzerland), pressure (piezoresistive BMP-180; Bosch Sensortec, Germany),
and location (global positioning system (GPS), 63530 Copernicus II; Trimble, USA) for less than 1500 USD.
This work focuses on measurements of CO, CO2, temperature, and relative humidity from the G-Pod.

mobilesensingtechnology.com
https://www.colorado.edu/lab/hannigan
https://www.colorado.edu/lab/hannigan


Atmosphere 2019, 10, 400 5 of 27

Atmosphere 2019, 10, x FOR PEER REVIEW 4 of 28 

 

India over one season (nHAPEx = 18). Three sampling time comparisons were employed (18–22 hourly, 
7–8 hourly, and 2–4 hourly) to capture a wider range of cumulative average PM2.5 concentrations (95–
6124 μg∙m−3). Resulting regressions showed high linearity (R2 = 0.75) eligible for Gold Standard 
certification and an overall particle correction coefficient of 0.22 (HAPEx reading/PM2.5 μg∙m−3). 

The Sharp GP2Y1010, 1–3 orders of magnitudes lower in cost than benchmarked nephelometers 
and photometers [24], was well described and optical properties rigorously characterized in a 
laboratory setting [17]. Wang and co-workers found high linearity (R2 ≥ 0.98, 0–1 mg∙m−3) against 
SidePak-measured PM2.5 concentrations and high precision among other Sharp sensors without 
convective flow [16]. They also characterized lower detection limits, as well as particle size, 
composition, relative humidity, and temperature effects on the raw signal output, finding high 
dependence on several factors. 

Budde and colleagues performed lab testing of the Sharp GP2Y1010 alongside the TSI DustTrak 
DRX Aerosol Monitor 8533 (~9000 USD) in a non-controlled indoor environment, finding mean 
absolute errors (MAE) of 20 μg∙m−3 using 5-min paired readings over a range of 0–150 μg∙m−3 [24]. 
They also found that time-averaging above 5 min did not drastically improve agreement between the 
Sharp and the TSI instrument. One-minute comparisons did have relatively larger MAE (20–50 
μg∙m−3).  

Berkeley Air Monitoring Group commercially packaged Sharp’s more precise sister sensor, the 
GP2Y1014, into the PATS+ (~500 USD), which operates on the same optical measurement principles 
but which utilizes custom firmware advances to more precisely control current that drives the IR-
LED at two distinct intensities, giving way to two separate measurement sensitivity domains and, 
thus, measurement ranges [7]. Laboratory testing of the PATS+ collocated with a gravimetrically 
adjusted TSI DustTrak II Aerosol Monitor 8530 inside a controlled chamber resulted in high linear 
agreement (R2 ≥ 0.99) at both sensitivity domains (0–5 and 0–40 mg∙m−3) for 15-min mean values. 
When deployed alongside gravimetric samplers in wood-burning Guatemalan kitchens for 48 h, the 
PATS+ mean PM2.5 concentration estimates showed strong correlation with integrated gravimetric 
PM2.5 (R2 = 0.9) over a range of about 650 μg∙m−3, showing promise of sensing capabilities in estimating 
field-based multi-day kitchen area concentrations at the low–mid-cost range [7]. 

2.2. Household Measurements 

Microenvironment sampling took place in a subset of P3 Bio and Gas households enrolled in 
exposure measurements [14], between September 2017 and March 2019. The ongoing sampling 
generally took place within two 48-h deployment periods weekly; the first deployment period was 
Monday to Wednesday and the second was Wednesday morning to Friday morning. The sampling 
apparatus consisted of three main parts: a custom low-cost environmental monitor called the G-Pod, 
a set of gravimetric pump and filter trains, and a pair of HAPEx loggers. The apparatus was 
positioned at a height of 1.5 m, 1 m from the most used cooking location according to the primary 
cook during that time of year (Figure 1). 

 
Figure 1. MicroenvironmentsamplingapparatusdeployedatatypicalruralkitchenintheKassena-Nankana(KN)
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2.2.2. Gravimetric Filter Sampling (Cumulative PM Measurements)

Particulate matter pump and filter sampling was performed using two separate sampling
trains: one designed to collect PM2.5 for total integrated mass and a second to collect PM2.5 for
carbonaceous PM2.5 analysis. Total PM2.5 was collected on a 47-mm PTFE (polytetrafluoroethylene)
filter (Teflo R2PJ047; Pall, USA) housed downstream of a PTFE-coated aluminum cyclone inlet
(2000-30EQ, three liters per minute (lpm) PM2.5 cut; URG, USA) connected to a pressure-compensating
vacuum pump (Universal PCXR8, SKC Inc, USA) set at a flow rate of 3.0 ± 0.02 lpm. A second
filter train collected PM2.5 mass on a 25-mm, pre-cleaned quartz fiber filter (Pallflex Tissuquartz
2500QAT-UP; Pall, USA) located downstream of an impactor (URG-2000-30PASS-1; URG, USA)
positioned inside a filter holder (URG-2000-25F-2LPM 2 lpm PM2.5 cut; URG, USA) and connected to
a pressure-compensating vacuum pump (Airlite; SKC Inc, USA) set at a flow rate of 2.0 ± 0.02 lpm.

2.2.3. Low-Cost PM Monitor: HAPEx Nano (Continuous PM Measurements)

Two HAPEx loggers were suspended in open air from the G-Pod roughly 10–20 cm from the pump
and filter inlets for the duration of the deployment period. In an effort to capture real-world performance
of the HAPEx and to better approximate conditions of the HAPEx worn for personal exposure sampling
throughout the study, no enclosures or screens were used to isolate the HAPEx from the environment.
The two HAPEx monitors collocated with the G-Pod rotated monthly, providing a wider range of
paired readings, capturing differences among a variety of individual HAPEx monitors. HAPEx Nano
monitors came factory calibrated for mass concentrations of incense smoke by Climate Solutions
Consulting, and calibrations are recommended annually to check monitor sensitivity [22].

2.3. Quality Assurance and Quality Control

2.3.1. Gravimetric Filter Sampling and Analysis

Flow calibrations were performed weekly on all sampling pumps using a rotameter calibrated to
local conditions using a DryCal flow calibrator (DC-Lite 1.08, Mesa Labs, USA). Any pumps deviating
from the setpoint ±0.02 lpm were recorded and corrected. If the pump flow could not be corrected,
it was removed from sampling circulation. The PCXR8 pump includes a total sampling time readout
which was compared to durations calculated from the enumerator recorded start and stop times.

Quartz fiber filters were conditioned at 500 ◦C for 18–24 h to remove possible contamination prior
to deployment. They were stacked and stored in pre-baked sterile amber glass jars separated by sterile
aluminum foil discs. Following sampling, these filters were stored in designated amber glass jars with
sterile aluminum foil discs to separate filters. Transportation and storage procedures are described
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elsewhere [38]. EC and OC sample concentrations were measured in Boulder, Colorado following
the NIOSH 5040 protocol. A 1.5-cm2 filter punch from each sample was analyzed with a Sunset
Laboratory OC–EC analyzer using the thermal optical transmittance method (TOT) where total carbon
(TC) is the sum of EC and OC. The remainder of the filters were preserved for future organic speciation
analysis. Field blank filters, filters that underwent the same handling protocols as 48-h samples yet did
not sample any air volume, were placed in each jar, and median concentration values from the set
of field blank filters were subtracted from each sample concentration to correct for transportation
and handling contamination.

Total PM2.5 mass depositions were determined by weighing the PTFE filters before and after sampling
using a five-digit LabServe model microbalance (BP210D; Sartorius Corporation, Goettingen, Germany)
housed in a custom-built, temperature- and humidity-controlled chamber. The filters underwent a 24-h
equilibration process inside the chamber prior to weighing (in triplicate), and the median blank deposited
filter mass was subtracted from the deposited sample mass as documented by Dutton and colleagues [42].
Filter mass depositions less than 21 µg (1.5 × SD of blank filter weighing) were flagged as below
the detection limit (BDL) and replaced with 140 µg (10 × SD, ~16 µg·m−3). Total integrated mass
concentrations (TM, µg·m−3) and associated propagated error were determined using blank-corrected
PTFE mass loadings, sample flow rate, and time. Total organic mass concentration (OM, µg·m−3) was
estimated from OC using an estimate of the OM/OC ratio of 1.6 found for primary biomass emissions from
a mix of traditional and improved cookstoves in the lab [43]. OM/OC ratios typically increase as organic
aerosols age and oxidize, yet we assume primarily the collection of fresh emissions. Non-carbonaceous
organic mass (NCOM, µg·m−3, predominantly oxygen and hydrogen) was estimated as (NCOM = OM
− TC), whereas inorganic, non-carbonaceous mass (NCIM, µg·m−3) was estimated as (NCIM = TM −
(EC + OM)).

2.3.2. G-Pod

Gas phase measurements of CO and CO2 concentrations were determined using corresponding
sensor signals and regression-based calibration coefficients computed from in-field zero and span gas
normalizations, as well as lab-based calibrations using NIST traceable gas standards. More information
on the sensor calibration process is documented elsewhere [37,38]. Minute medians of CO, CO2,
temperature, and relative and absolute humidity were integrated with time-matched HAPEx
readings. Modified combustion efficiency (MCE = ∆CO2/(∆CO2 + ∆CO), a proxy for combustion
efficiency, was calculated using elevated CO2 and CO molar concentrations above background.
Background CO2 and CO concentrations were determined for each 48-h deployment as the third
percentile and minimum, respectively.

2.3.3. HAPEx Signal Processing

Indirect measurements of particle mass at high temporal resolution (sub-minute) in dynamic
environments require significant signal processing. Li and co-workers explored on-line and off-line
GP2Y1010 signal processing techniques, finding a sliding time window and low-pass filter to isolate
signal from noise to increase data quality for indoor networks of monitors [19], and their results helped
frame our signal processing.

Baseline Drift Correction Algorithm and Zeroing

Light-scattering-based particle instruments, especially low-cost models, often require frequent
zeroing, or characterization of signal in clean air. Cleaning and zeroing of all the HAPEx monitors took
place weekly as monitors were commonly deployed for a week at a time. Briefly, the HAPEx sensing
chambers were cleaned by blowing air gently through the inlet in an effort to dislodge adsorbed particles
and preserve sensitivity over time. Zeroing was completed by placing all the monitors in a sealed case
for 10 min, where air inside the case was first pulled through a filter before entering the case. Our group
and many others zero low-cost monitors before and after deployments to the field to capture beginning
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and end signal states. The main concern with pre- and post-baseline corrections is that this approach
often assumes the drift occurs linearly through time, an assumption we discovered is not accurate.
Rather, we identified abrupt (1–5 min) step changes in baseline (background concentration) sensor
readings typically coinciding with large spikes in signal within a majority of the 48-h deployments
(Figure 2).
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Figure 2. Raw (red) and baseline-corrected (blue) Household Air Pollution Exposure (HAPEx) readings
using a dynamic baseline (black) calculated from a rolling 80-min window. This monitor was kept
in a clean environment from 11 November to the morning of 13 November, and then transported
and deployed to study households for two consecutive 48-h deployments.

These step changes can be positive and/or negative in a single deployment. Lens fouling and/or
overall sensing chamber reflectivity changes caused by particle adsorption to or desorption from
the sensing chamber walls were posited as sources of changes in baseline signals. To address these
fluctuations in baseline signal and their associated errors, a baseline drift correction algorithm was
created. The objectives of this algorithm were twofold: (1) to distinguish real shifts in signal from false
shifts while minimizing the introduction of new errors, and (2) to preserve expected signal distributions.
To evaluate the performance of the algorithm, raw and baseline-corrected data logged from paired
monitors were assessed for correlation and overall agreement. Briefly, the algorithm sets a baseline
value as the third lowest minute value in an 80-min running window (ignoring up to four negative
values) and subtracts this value from all raw readings within that window. The mode of the corrected
data is set to zero to center the noise for the entire deployment. Histograms of the raw and corrected
data were plotted and examined for log-normal distribution. Raw data were preserved alongside
corrected data for comparison throughout subsequent analysis.

Base Filter

All paired baseline corrected HAPEx data were filtered for erroneous readings by comparing readings
from the two collocated HAPEx. A 5-min rolling average was calculated for each HAPEx. Absolute
differences between the two HAPEx rolling readings deviating by more than three standard deviations
from the mean difference were flagged as outliers and omitted from the analysis. A cumulative record of
the number of outliers was calculated. Because there were no paired readings when only one HAPEx
monitor collected data, these readings bypassed this filter.

Threshold Signal Filter

A signal threshold filter was implemented (as an option) for two reasons. Firstly, noise in the HAPEx
signal over the course of the sampling campaign was found to be monitor- and deployment-specific,
most likely an effect of long-term sensor fouling and variability in environmental variables. Secondly,
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meaningful logarithmic transformations of HAPEx data require positive values. The method by which
non-positive readings and signals indistinguishable from noise were converted to meaningful values
was implemented through this filter. Specifically, this filter involved calculating the fifth percentile of
the 5-min rolling standard deviation of each monitor deployment to approximate the noise associated
with each unit during the cleanest portion. This value was multiplied by three to approximate signal
threshold (ST, raw) above background. The same task was conducted in a known, clean environment
during the zeroing procedure where the average ST was 5.4 signal counts. The clean air ST was used in
the case a monitor had an ST less than 5.4 during a deployment.

Correlation and agreement between baseline-corrected paired readings and those of the raw
readings were evaluated using scatter and Bland–Altman plots, respectively. Lin’s concordance
correlation coefficient (CCC), which assesses agreement between variables, and the coefficient of
reproducibility (RPC) were used as evaluative measures of the baseline correction algorithm.

Relative Humidity Correction

Humidity effects on Sharp GP2Y1010 sensors were examined by others in a lab setting [16].
Holding particle properties and temperature constant, Wang and colleagues subjected several GP2Y1010
sensors, a SidePak Personal Aerosol Monitor AM510 (TSI Inc.), and scanning mobility particle sizer
(SMPS, TSI Inc.) to varying levels of relative humidity (RH; 20%, 67%, 75%, and 90%), investigating
changes in sensor sensitivity to reference-calculated PM2.5 concentrations (0–5 mg·m−3). Results from
their testing were provided and used to fit a model relating changes in sensitivity (mV per µg·m−3)
to relative humidity against the SidePak and SMPS reference mass concentrations, independently
(Figure S1, Supplementary Materials). Both models show nonlinear relationships; however, when
compared against the SidePak, the trend is superlinear, while a quadratic relationship best fits the data
when the SMPS is used as the reference. Wang and colleagues noted that the SMPS may not be applicable
under high values of RH, since the sheath flow may dry the particles and cause an underestimate of
particle concentrations.

Other groups [44–48] empirically determined relative humidity correction factors for higher-end
nephelometers, with some finding superlinear relationships similar to results from Wang et al. for
the Sharp GP2Y1010. Soneja and coworkers found log-transformed relationships between gravimetric
mass and nephelometer readings as a function of RH to have lower root-mean-squared error (RMSE)
than non-transformed variables but cautioned against the presence of overfitting [45]. They also
recommended correcting over the full range of relative humidity, not just above 60% as originally
proposed by Chakrabarti et al. [47].

Two pointwise RH corrections were tested on baseline-corrected 1-min HAPEx data (before base
and signal threshold filters applied) over the full RH range to investigate effects on relationships
between mean HAPEx and gravimetric PM2.5 mass concentrations above and beyond 48-h mean RH.
The first, originally discovered by Laulainen [48] and used by Chakrabarti et al., uses Equation S1
and the second, the empirical relationship derived from data provided by Wang and colleagues is
expressed in Equation S2. Details on these corrections can be found in the Supplementary Materials.

2.3.4. HAPEx and Environmental Measures of Central Tendency

Kitchen environments experience large variability in environmental factors like temperature,
humidity, and CO and CO2 concentrations over 48-h periods and seasonally. Encompassing this
variability toward reaching a single comprehensive metric with which to use in regression modeling
for each deployment is a challenge and deserves a closer look. Two measures of HAPEx signal central
tendency were calculated with which to compare to cumulative filter measurements in terms of arithmetic
and geometric means. The geometric mean is less sensitive to large outliers, while the arithmetic mean
treats each measurement equally.

Likewise, 48-h CO, CO2, temperature, absolute and relative humidity, and MCE values were
calculated as arithmetic averages and as HAPEx-signal weighted-averages reflecting environmental
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conditions proportional to HAPEx signal (Equation S3, Supplementary Materials). This is the first
time, to our knowledge, this weighted-averaging technique was applied to low-cost PM sensor field
data to arrive at environmentally significant parameters for multi-day periods.

2.4. Modeling Gravimetric PM2.5 Concentrations and Particle Coefficients with Low-Cost Sensors

Optical (i.e., light-scattering) sensors indirectly measure PM mass and, therefore, require
gravimetric measurements with which to ground sensor readings. Traditionally, particle coefficients
(PC) also known as correction factors, are scaling values used to ground sensor readings to gravimetric
measurements (Equation (1)).

PC =
mean(HAPEx)

[Gravimetric PM2.5]
. (1)

To assess 48-h mean relative humidity effects on PC, Equations (2) and (3) were employed using
mean RH and HAPEx-weighted mean RH, respectively. The concept is that a 48-h mean RH term
proportional to HAPEx response could explain more variation in PC. Additionally, a log–log-transformed
version was employed (Equation (4)) as recommended by Soneja et al. Lastly, a nonlinear model
derived by Laulainen and co-workers experimentally [48] and characterized by others [47] was fit using
Equation (5). These relationships represent most model forms relating RH to PC found in the literature,
but the list is not exhaustive.

PC ∼ β0 + β1(meanRH) + ε. (2)

PC ∼ β0 + β1
(
HAPExweightedRH

)
+ ε. (3)

log(PC) ∼ β0 + β1
(
log
(
HAPExweightedRH

))
+ ε. (4)

PC ∼ a +
b×
(
HAPEx2

weightedRH

)
1−HAPExweightedRH

+ ε. (5)

Moving beyond effects attributable to RH only, a third multilinear regression model estimating
PC was informed by stepwise linear regression incorporating interactions among 48-h mean G-Pod
measurements (e.g., temperature, and CO and CO2 concentrations) and HAPEx baseline-corrected
signal, filter mass constituents (EC, OC, dust etc.), season, urban/rural classification, and kitchen
descriptions, which was ultimately reduced to the final model (Equation (6)). “Season” classification
was consistent with current and past studies in this region [9,14,15,30,34,35,37,38,40,41,49,50]
and “CoverageClass” is a variable used to classify kitchen descriptions to represent a wide range
of kitchen area geometries and coverage types (e.g., roof with two walls, no roof with one
wall). A breakdown of the “CoverageClass” by urban/rural samples is available in Figure S2
(Supplementary Materials).

PC ∼ β0 + β1(meanHAPEx× season) + β2(dust× season)+β3(meanHAPEx× LocationType) + ε. (6)

Gravimetric PM2.5 mass concentrations can also be directly modeled. Firstly, a basic model
regressing mean 48-h HAPEx signal on total integrated PM2.5 mass concentrations was done.
Then, a second regression was run, limiting the comparison to gravimetric filter samples containing
less than 20% mass by dust (n = 8). The resulting relationship of this regression gives a better estimate
of the effect primary biomass emissions have on 48-h mean HAPEx signal.

Lastly, to simulate a situation where gravimetric filter data are not available (excluding EC, OC, dust,
etc.) but low-cost tools are, a stepwise multilinear regression was run, modeling the logarithm of total
integrated PM2.5 mass concentration with G-Pod and baseline-corrected HAPEx measurements coupled
with “season”, “LocationType” (e.g., urban/rural), and “CoverageClass” (i.e., kitchen classifications),
resulting in Equation (7). Dependent variable normality was achieved by taking the logarithm of total
PM2.5 mass concentration reflecting a log-linear form. “PercbyMCE” is the fraction of summed HAPEx
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readings corresponding to MCE > 0.995 to the total summation of HAPEx readings in a 48-h deployment,
and it is a proxy for the fraction of readings associated with limited to no combustion activity.

log([PM2.5]) ∼ β0 + β1(mean_temp) + β2(mean_RH) + β3(percbyMCE)
+β4(meanHAPEx) + β5(season)
+β6(CoverageClass× LocationType) + ε.

(7)

An analogous, but slightly variable model to Equation (7) was generated through stepwise
regression using Wang et al.’s pointwise RH correction (Equation S1, Supplementary Materials)
on baseline-corrected HAPEx readings and is described by Equation (8). The variable “CleanSD”
is the average signal threshold of the paired monitors representing background signal noise for
individual HAPEx.

log([PM2.5]) ∼ β0 + β1(mean_temp) + β2(mean_RH) + β3(percbyMCE)
+β4(meanHAPExRH−corr) + β5(cleanSD)

+β6(meanCO2 × season) + β7(CoverageClass× LocationType)
+ε.

(8)

Data processing and analysis were executed using custom scripts in the Matlab environment
(R2018b, Mathworks). The baseline correction algorithm was originally written in Python but later
translated to Matlab for uniformity with subsequent analysis. Bland–Altman plots were made using
Bland–Altman [51] and Lin’s CCC calculated using a modified version of f_CCC [52]. Colored grouped
boxplots were made using grammar of graphics plotting (GRAMM) [53]. Stepwise regression was done
using Matlab’s function stepwiselm. Reported coefficients of determination (R2) are all adjusted for
the number of model coefficients (adjusted R2) and resulting degrees of freedom. A copy of the baseline
algorithm Matlab script can be found in the Supplementary Materials.

3. Results

A total of 29 and 42 microenvironment samples were collected between September 2017 and March
2019 from a total of 28 rural and 32 urban households, respectively. Nine filter samples were omitted
from the analysis due to insufficient gravimetric sampling time (<41.6 h, <87% of 48 h). The average
filter sampling time was 47 h (SD = 1, n = 62). Deployments containing less than 95% matched minutes
between at least one HAPEx and G-Pod measurement were also omitted from this analysis (n = 18),
leaving 44 filter-to-HAPEx comparisons. Deployments with paired 48-h HAPEx readings disagreeing
by more than three standard deviations of all pairs were flagged, and the lower of the two HAPEx
values was used (n = 1). Out of the 71 microenvironment deployments, 13 had only one HAPEx unit
operating properly. A total of 163,280 G-Pod minute measurements were collected, 143,318 of which
had at least one HAPEx reading and 121,198 of which had paired HAPEx readings.

3.1. Cumulative Gravimetric and Carbonaceous PM2.5

Mean 48-h kitchen area PM2.5 concentrations were 168µg·m−3 in rural homes (n = 25)
and 116µg·m−3 in urban homes (n = 37) (Figure 3). These integrated mass concentrations ranged from
53–354 µg·m−3 in rural homes and 16–1114 µg·m−3 in urban homes. Median concentrations were less
than means at 149 µg·m−3 and 70 µg·m−3 in rural and urban homes, respectively.

EC and OC mass concentrations were 1.7 µg·m−3 and 25.4 µg·m−3 in rural kitchens, and 1.1 µg·m−3

and 15.4 µg·m−3 in urban kitchens, respectively. The ratio of EC to OC (EC/OC) was roughly equal in
urban (0.08) and rural kitchens (0.07).

The sum of carbonaceous mass and non-carbonaceous organic mass (OM + EC) was on average
42 µg·m−3 and 26 µg·m−3 in rural and urban kitchens, respectively. This metric approximates
the contribution of primary combustion emissions to total PM2.5, and ranged from a negligible fraction
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to virtually all PM2.5 mass with a mean fraction of 30% (median = 29%) in rural kitchens and 40%
(median = 22%) in urban kitchens.

Mean inorganic, non-carbonaceous mass concentrations (assumed to be primarily road and soil
dust in this region) were 125µg·m−3 in rural homes and 90µg·m−3 in urban homes. These concentrations
represent, on average, 71% and 61% of overall PM2.5 mass in rural and urban homes respectively,
yet this percentage ranged from near 0% to 99% in both settings. Ambient air quality measurements
made on the outskirts of Navrongo from 2010 of PM2.5 and PM10 allowed Ofosu and colleagues to
perform source apportionment finding resuspended road and soil dust to be the leading contribution
(52%) to total PM2.5 mass with biomass combustion as the second most important source (16%) [15].
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%) and mean baseline-corrected HAPEx signal. Note the logarithmic y-axis.

Sixty percent (37/62) of cumulative kitchen area 48-h total PM2.5 concentrations were higher than
the World Health Organization (WHO) interim target one (IT-1) 24-h average PM2.5 mass concentration
level of 75 µg·m−3 [54] (Table 1). The fraction of 48-h samples exceeding this limit were not equal
across urban and rural kitchens. In fact, 43% of urban kitchens exceeded the target level compared
to 84% of rural kitchens. All rural kitchens surpassed the interim-2 target level of 50 µg·m−3. It is
important to note that these sample period exceedance percentages are quite conservative estimates of
the percentage of days (24-h periods) exceeding the target levels.

When limiting the analysis to only non-carbonaceous, inorganic mass (dust), 71% (44/62) of samples
surpassed the WHO guideline level of 25 µg·m−3 (Table 2). In fact, 57% (21/37) of urban kitchens
exceeded the guideline level relative to 92% (23/25) of rural kitchens. Clearly, dust is a major contributor
to household PM2.5, and efforts to reduce total PM mass concentrations in kitchens ought not to neglect
baseline contributions from dust.
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Table 1. World Health Organization (WHO) 24-h average total particulate matter less than 2.5 microns
in diameter (PM2.5) mass concentration targets and guidelines, and percentage of rural and urban 48-h
kitchen samples exceeding each level. These percentages represent the lowest percentage of individual
days exceeding each level. IT—interim target, AQG—air quality guideline.

Criterion PM2.5 > 75 µg·m−3 PM2.5 > 50 µg·m−3 PM2.5 > 37.5 µg·m−3 PM2.5 > 25 µg·m−3

WHO 24-h metric IT-1 IT-2 IT-3 AQG

Rural 84% (21/25) 100% (25/25) 100% (25/25) 100% (25/25)

Urban 43% (16/37) 62% (23/37) 76% (28/37) 92% (34/37)

Overall 60% (37/62) 77% (48/62) 85% (53/62) 95% (59/62)

Table 2. World Health Organization 24-h average total PM2.5 mass concentration targets and guidelines,
and percentage of rural and urban 48-h kitchen samples exceeding each level for dust concentration only.
These percentages represent the lowest percentage of individual days exceeding each level. IT—interim
target, AQG—air quality guideline.

Criterion PM2.5,dust > 75 µg·m−3 PM2.5,dust > 50 µg·m−3 PM2.5,dust > 37.5 µg·m−3 PM2.5,dust > 25 µg·m−3

WHO 24-h metric IT-1 IT-2 IT-3 AQG

Rural 68% (17/25) 84% (21/25) 88% (22/25) 92% (23/25)

Urban 27% (10/37) 41% (15/37) 49% (18/37) 57% (21/37)

Overall 44% (27/62) 58% (36/62) 65% (40/62) 71% (44/62)

3.2. Low-Cost Monitor Performance and Baseline Signal Correction

3.2.1. High Temporal Reproducibility: Base and Threshold Signal Filters

The base filter detected, flagged, and omitted 409 of 121,198 paired baseline-corrected minute
anomalies (0.34%) and 400 of 121,198 paired raw minute anomalies (0.33%) from the analysis.
The omission criteria for the base filter (3 × SD of 5-min rolling differences) were 364 and 755
for baseline-corrected and raw readings, respectively. On median, paired 5-min rolling average
differences (12.8) were nearly five times higher than those of baseline-corrected readings (2.6). This is
the first line of evidence of a functioning baseline drift correction algorithm.

Although squared Pearson’s r values were not significantly different (r2 = 0.47, p = 0.31)
between baseline-corrected and raw 1-min values using Fisher’s r to z transformations,
the baseline-corrected coefficient of reproducibility (RPC = 1.96 × SD of differences) was almost
half that of the raw RPC, showing greater reproducibility of baseline-corrected readings (Figure 4).
Lin’s concordance correlation coefficients (CCC) were no different between raw and baseline-corrected
1-min data at the 5% significance level (CCCbcor = 0.687, 95% confidence interval (CI): 0.685–0.689;
and CCCraw = 0.684, 0.681–0.686) (Figure 4).

When 5-min rolling averages were taken, baseline-corrected and raw paired correlations increased
substantially, yet baseline-corrected correlation (r2 = 0.84, 95% CI: 0.846–843) was significantly (p = 0)
higher than the raw (r2 = 0.60, 0.599–0.607). RPCs dropped considerably for both sets of data,
yet the decrease was more pronounced for baseline-corrected pairs (Figure 5). Spearman’s rho
is useful for characterizing non-parametric associations between measures and followed similar
trends as Pearson’s r due to the overall linearity between HAPEx readings. Perhaps most striking,
the gap between CCC for corrected (0.917, 95% CI: 0.916–0.918) and raw (0.758, 0.756–0.760) data
grew considerably, further affirming the value of the drift correction algorithm as significantly
and substantially improving agreement between paired readings when a 5-min rolling average is taken
(Figure 5). False signals indicative of baseline drift are likely to affect paired monitor signals due to
sheer proximity to one another, potentially preserving Pearson’s correlation, yet the magnitude of
the drift is likely to vary as well, and this discrepancy is captured by the RPC and CCC.
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The threshold filter identified and replaced 74,857 of 238,686 raw minute readings (31%) and 171,607
of 238,675 baseline-corrected minute readings (72%) with a monitor-deployment-specific threshold
signal. A greater percentage of baseline-corrected data were replaced due to the fact that raw readings
typically drifted upward, reducing the number of readings recorded below the threshold signal
(TS). Baseline-corrected and raw monitor-deployment-specific TS followed a log-normal distribution
and ranged from 5.4 (determined through zeroing) to 22 with a mean of 6.6.
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Figure 5. Scatterplots (a,c) and Bland–Altman plots (b,d) of paired, 5-min rolling averaged HAPEx signals for
raw (a,b) and baseline-corrected (c,d) data. Pearson’s correlation (r), Lin’s concordance correlation coefficient
(CCC) with 95% confidence intervals (95CI), a linear least squares fit (LS, solid line) with root mean squared error
(RMSE), coefficients of variation (CV) and coefficients of reproducibility (RPC) are reported.

3.2.2. Lower Temporal Reproducibility: Paired Mean HAPEx 48-h Agreement

Paired 48-h mean HAPEx readings (with base and threshold filters applied) were compared using
raw (n = 39) and baseline-corrected (n = 40) values (Figure 6) and colored by HAPEx weighted-mean
RH. Coefficients of determination (adjusted R2) and concordance correlation coefficients (CCC)
were calculated for each set of measurements. Firstly, the CCC was significantly higher (p < 0.05)
for baseline-corrected readings (0.96, 95% CI: 0.94–0.98) compared to raw counterparts (0.78, 0.68–0.85).
Baseline-corrected mean 48-h precision was substantially improved over raw readings, further affirming
the baseline drift algorithm. The tendency for raw measurements to drift upward giving false positives
is illustrated in the range of 48-h raw mean readings (5.4–496) compared to the drastically lower
baseline-corrected range (5.4–48). No significant relative humidity effect on precision was discovered,
although absolute differences between paired mean 48-h readings increased as RH increased (Figure S3,
Supplementary Materials). Also, coefficients of determination did not change for raw (R2 = 0.67) data
and actually lowered for baseline-corrected (R2 = 0.85) data using 48-h geometric mean values.
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by HAPEx-weighted mean RH (%). Coefficients of determination (R2), root-mean-squared error (RMSE)
and Lin’s concordance correlation coefficients (CCC) with 95% confidence interval (95CI) are reported.

3.3. Encompassing Environmental Variability in Kitchen Areas toward Understanding Effects on Low-Cost
Sensor Readings

Figure 7 shows mean (95% CI via bootstrapping) kitchen environmental measurements collected
by the G-Pod by hour of day and by season. Kitchen temperature, for example, varies more by hour of
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the day than seasonally, whereas relative humidity varies more by season than diurnally. The degree to
which this variability is encompassed in 48-h mean metrics is examined in the section modeling particle
coefficients. Unsurprisingly, CO2 baseline concentrations vary substantially by season, driven by
vegetation and climate patterns. Additionally, peaks in CO concentrations vary dramatically by hour of
day and to a lesser extent seasonally, as found before in a previous cookstove study in the region [38,41].
Background-subtracted CO and CO2 concentrations used in estimating MCE during a 48-h deployment
remove the seasonal trends but preserve hour-of-day trends, clearly showing depressions from unity
(an MCE of ~1 signifies no combustion) corresponding to combustion activity at typical mealtimes
(Figure S4, Supplementary Materials). It is important to point out that rural and urban deployments
did not fully cover all seasons, resulting in confounding between season and urban/rural variables.

Atmosphere 2019, 10, x FOR PEER REVIEW 16 of 28 

 

 
Figure 7. Time-of-day plots marking mean (95% CI) (a) temperature (K), (b) relative humidity (%), (c) 
CO concentration (ppm), and (d) CO2 concentration (ppm) G-Pod measures in study kitchens by hour 
of the day and colored by season. “Other” is a transitional season of two weeks between “dry” and 
“light rainy” seasons. 

Figure 8 illustrates the difference between means and HAPEx-weighted means for an overall 
relative humidity value over a 48-h period. Sixteen HAPEx monitor deployments had at least a 10% 
relative difference between the 48-h RH mean and weighted mean. Similar findings were discovered 
for other covariates (i.e., CO, CO2, and temperature). 

 
Figure 8. Relative differences between 48-h mean and HAPEx-weighted mean relative humidity. 

3.4. Baseline Correction Quality Check: Low-Cost Optical Sensor vs. Gravimetric Filter 

Figure 7. Time-of-day plots marking mean (95% CI) (a) temperature (K), (b) relative humidity (%),
(c) CO concentration (ppm), and (d) CO2 concentration (ppm) G-Pod measures in study kitchens by
hour of the day and colored by season. “Other” is a transitional season of two weeks between “dry”
and “light rainy” seasons.

Figure 8 illustrates the difference between means and HAPEx-weighted means for an overall
relative humidity value over a 48-h period. Sixteen HAPEx monitor deployments had at least a 10%
relative difference between the 48-h RH mean and weighted mean. Similar findings were discovered
for other covariates (i.e., CO, CO2, and temperature).
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3.4. Baseline Correction Quality Check: Low-Cost Optical Sensor vs. Gravimetric Filter

Regressions of 48-h mean HAPEx readings on integrated PM2.5 mass constituents show interesting
trends. Firstly, Figure 9 illustrates the relationship between (a) raw and (b) baseline-corrected 48-h
mean HAPEx readings and total PM2.5 mass concentration (µg·m−3). The baseline-corrected data mean
HAPEx signal (R2 = 0.48) explains more than twice as much variation in total integrated filter mass
concentration as the raw data (R2 = 0.22). For baseline-corrected HAPEx signal, both the intercept
(5.0, 95% CI: 1.9–8.8) or modeled HAPEx signal in clean air and slope (0.089, 95CI: 0.061–0.117)
or particle coefficient are significant (p < 0.05). For raw HAPEx data, the slope is substantially higher
(0.479). Points are colored by EC/OC, with higher values corresponding to darker shades. Elemental
carbon absorbs more light relative to OC and would in theory result in less scattered light available
for the photodiode to detect. Black carbon (BC), a close counterpart to EC, is commonly measured
optically using light absorptivity principles. When the regression is limited to gravimetric samples
containing less than 20% mass of dust (Figure 10), the slope increases slightly to 0.112 (0.067–0.157,
p < 0.05) and 84% of mean HAPEx variance is explained by total PM2.5 mass concentration. This slope
reflects HAPEx sensitivity to primary biomass emissions. Regressions of mean HAPEx readings on
EC, OC, or TC show poor correlation, whereas dust mass alone explains 46% of HAPEx variance.
Moreover, regressions grouped by urban/rural and season were explored, showing variability in slopes
and intercepts across those dimensions (Figure S5, Supplementary Materials).
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Figure 10. Kitchen area 48-h mean HAPEx readings regressed against gravimetric total PM2.5 mass
concentration colored by the ratio of elemental to organic carbon (EC/OC) for a subset of samples (n = 8)
with less than 20% of total mass dust (** p < 0.01).

3.5. Applying Pointwise RH Corrections from Literature

Relative humidity corrections made to individual 1-min baseline-corrected readings improved
linear relationships between mean HAPEx and gravimetric PM2.5 mass concentrations (Figure 11).
Corrections made from Wang et al. explained an additional 11% variance in mean HAPEx readings
(R2 = 0.59) whereas the correction characterized by Chakrabarti et al. explained and additional 6%
variance (R2 = 0.55). Both corrections lowered the modeled intercept (3.93, p < 0.05 and 4.19, p < 0.05),
whereas the correction derived from Wang et al. resulted in a higher particle coefficient (0.104, p < 0.05)
as opposed to Chakrabarti et al.’s which remained similar to the uncorrected data (0.086, p < 0.05).
Both RH-corrected slopes (PCs) are within the 95% CI of the uncorrected data slope.
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3.6. Low-Cost Sensor’s Ability to Predict Gravimetric Filter Measures

Part of evaluating the low-cost optical sensor was modeling the predictive capacity of the low-cost
readings to estimate reference measurements. Model results estimating particle coefficients and total
PM2.5 mass concentrations are described below. Previous literature focused on modeling particle
coefficients. We explored the utility of an alternative approach where we directly model PM2.5 mass
concentration, a relationship by which the Gold Standard can be compared.

3.6.1. Modeling Particle Coefficient

Recall particulate matter varies in composition, size, reflectivity, etc., causing variation in resulting
particle coefficients (PCs). Particle coefficients were calculated from 48-h integrated gravimetric
PM2.5 mass concentrations and 48-h mean HAPEx baseline-corrected values using Equation (1),
and then they were modeled using environmental factors (e.g., temperature, relative humidity, dust
concentrations, etc.) and classifications (e.g., urban/rural and season) as predictors to understand what
drives variation in PCs (Equations (2)–(6)). The mean and median rural particle coefficients (PCs)
were 0.143 (±0.064, n = 18) and 0.130, respectively, ranging from 0.060 to 0.308. The mean and median
urban PCs were 0.187 (±0.163, n = 26) and 0.132, respectively, ranging from 0.068 to 0.845. Figure 12
shows PCs paired with gravimetric mass concentrations and weighted-mean RH on a logarithmic
vertical axis.

Mean RH and HAPEx-weighted mean RH alone were poor predictors of PC, explaining negligible
(≤5%) variation (Table 3, adjusted R2). Very weak correlation (R2 = 0.04) between 48-h mean RH values
and PC was found with no significant linear trend (p = 0.11) (Figure S6, Supplementary Materials).
However, the multilinear model (Equation (6)) describes 79% of PC variation with an RMSE of 0.06
and normally distributed residuals (Figure S8, Supplementary Materials). Interactions of season
and urban/rural (LocationType) with mean HAPEx signal helped disentangle the effects those two
variables had on regression slopes (PC), as illustrated in Figure S5 of Supplementary Materials,
and quantified in Table 3. Dust concentrations interacting with season helped explain additional
variability as the fraction of dust making up total PM2.5 mass in kitchens varied seasonally (Figure S7,
Supplementary Materials). Full model results can be found in the Supplementary Materials.
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Table 3. Regression results modeling particle coefficients (PCs) (n = 44) with relative humidity (RH)
and other variables. RMSE—root-mean-squared error; meanHAPEx—PM monitor mean 48-h signal.

Model Coefficients b(0), a b(1), b b(2) b(3) p Adj. R2 RMSE

Equation (2) (mean RH) 0.117 * 0.001 - - - 0.02 0.13

Equation (3) (HAPEx-weighted RH) 0.115 * 0.002 - - - 0.03 0.13

Equation (4) (logarithmic) 3.75 * −0.18 - - - 0.05 0.36

Equation (5) (nonlinear) 0.153 * 0.037 - - - 0.007 0.13

Equation (6) (multilinear) 0.112 - - - 0.005

0.79 0.061

meanHAPEx 0.007 - - - 0.09

dust_concentration −9 × 10−4 - - - 0.10

Location_Type: rural Reference Group

Location_Type: urban 0.12 - - - 0.03

meanHAPEx: season_Dry Reference Group

meanHAPEx:
season_Harmattan_bushburning - −0.001 - - 0.80

meanHAPEx: season_Heavy_Rainy - 0.005 - - 0.33

meanHAPEx: season_Light_Rainy - 0.07 - - 0.00

meanHAPEx: season_other - 0 - - NA

dust_concentration: season_Dry Reference Group

dust_concentration:
season_Harmattan_bushburning - - 0.0002 - 0.71

dust_concentration: season_Heavy_Rainy - - −0.001 - 0.17

dust_concentration: season_Light_Rainy - - −0.022 - 0.00

dust_concentration: season_other - - 0 - NA

meanHAPEx: LocationType_Rural Reference Group

meanHAPEx: LocationType_Urban - - - −0.01 0.01

Note: * p < 0.05, else see p for Equation (6); NA—not available.
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3.6.2. Modeling Gravimetric PM2.5 Concentration

PM2.5 mass concentrations were measured; however, modeling these measurements using HAPEx
readings and other environmental covariates (e.g., temperature, relative humidity, season, kitchen
characteristics, etc.) as predictors (as if filter measurements were not taken) allowed us to better
understand the predictive capacity of the sensor when baseline-corrected HAPEx signal is not corrected
for RH (Equation (7)) and when an RH correction is applied (Equation (8)). Modeling the log of
48-h integrated total PM2.5 mass concentration using Equation (7) (see Supplementary Materials for
full results) resulted in moderately high correlation (R2 = 0.69, Figure 13a) and normally distributed
residuals (Figure S9, Supplementary Materials). Predictor terms with significant coefficients (p < 0.05)
included the overall intercept (β = 36.6, ±11.7 standard error), mean temperature (−0.1 ± 0.04), mean
RH (−0.04 ± 0.01), meanHAPEx signal (0.046 ± 0.009), kitchens with roofs but no walls (−1.94 ± 0.75)
relative to no roof with one wall (reference group), the “Harmattan/bushburning” (−0.59 ± 0.22)
and “heavy rainy” (1.35 ± 0.57) seasons relative to the “dry” (reference group) and an interaction term
of kitchens with a roof and four walls in the urban setting (−2.51 ± 0.82) relative to rural kitchens with
no roof and one wall (reference group).

Results from modeling total PM2.5 mass concentration using Equation (8)
(see Supplementary Materials for full results) had an improved fit (R2 of 0.79, Figure 13b)
and a lower RMSE (0.35) than Equation (7) (R2 of 0.69, RMSE of 0.42) also with normally distributed
residuals (Figure S10, Supplementary Materials). Similar to results from Equation (7), predictor terms
with significant coefficients (p < 0.05) included the overall intercept (β = 41.4, ±11.96 standard error),
mean temperature (−0.1 ± 0.04), mean RH (−0.03 ± 0.01), mean CO2 (−0.01 ± 0.004), percbyMCE
(−0.8 ± 0.3), meanHAPEx baseline-corrected signal (0.076 ± 0.01), kitchens with no roof or walls
(2.50 ± 0.68), with roof and one wall (2.50 ± 0.69), with roof and four walls (1.28 ± 0.50), and with
roof and no walls (2.1 ± 0.84) compared to kitchens with no roof and one wall (reference group),
the “light rainy” (30.2 ± 11.9) season relative to the “dry” (reference group), urban kitchens (−2.4 ± 0.59)
relative to rural kitchens (reference group), the HAPEx signal threshold (“cleanSD”, −0.08 ± 0.03)
and two interaction terms; one term for mean CO2 and the “light rainy” season (−0.07 ± 0.27) relative
to mean CO2 and the “dry” season (reference group), and a second term for urban kitchens with no
roof and two walls (3.36 ± 0.80) relative to rural kitchens with no roof and one wall (reference group).
The “Harmattan/bushburning” season (−4.17 ± 1.93) relative to the “dry” season (reference group) had
a p-value of 0.056.

Figure 13. Modeled log of 48-h integrated PM2.5 mass concentrations vs. log measured PM2.5 mass
concentrations using (a) Equation (7) without a pointwise RH correction, and (b) Equation (8) with
pointwise RH-corrected data. Full model results can be found in the Supplementary Materials.
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4. Discussion

This paper compares PM2.5 concentration readings from HAPEx low-cost optical sensors
and gravimetric filter samples in household kitchen areas in northern Ghana. In addition to cost
savings, optical sensors provide time-resolved measurements, which can be important in understanding
PM sources and trends. We note a few key methodological findings related to HAPEx signal
processing, reproducibility at varying temporal scales, and comparisons to gravimetric filter results.
However, we contextualize these methodological insights by discussing some substantive results from
this field study. Analysis of findings specific to the Prices, Peers, and Perceptions (P3) study activities
are planned for future work where, for example, we aim to investigate differences among study arms
incorporating behavior (i.e., stove use, adoption results, time activity).

Firstly, it is worth noting the large contribution of dust mass to total kitchen area 48-h integrated
gravimetric PM2.5 mass in this field study. The average rural kitchen PM2.5 mass is 71% dust
and the average urban kitchen is 61% dust. These dust fractions are considerably larger than
the estimated 52% contribution to ambient PM2.5 measured in 2010 in Navrongo, the district capital
and home to many of the urban sample households and within tens of kilometers from many of the rural
sample households [15]. The increased dust fraction is likely linked to seasonal trends (Figure S6,
Supplementary Materials) but also driven by human behavior. Anecdotal evidence suggests that many
cooks and children prepare kitchens for cooking by sweeping the ground floors and often resuspending
soil dust in the process—an activity commonly occurring directly prior to cooking, making high
temporal measurements of exposure and behavior critical [9]. Interventions aimed at reducing total
PM2.5 mass concentrations to WHO interim target levels (I, II, and III) ought to consider a multifaceted
approach targeting solid biomass combustion activity, as well as resuspended road and soil dust in
some study regions. Even if EC and OM PM2.5 mass constituents were reduced to zero, 68% and 27%
of rural and urban kitchens in this study region exceeded the WHO interim target (IT-1) of 75 µg·m−3.
Long tails in dust particle size distributions could explain the large fraction of dust measured in the fine
mode (PM2.5), with some research suggesting a limited dependence of the particle size distribution of
<5-µg dust on soil properties [55], motivating additional sampling.

A major methodological finding stemmed from firstly identifying baseline drift and then
implementing and evaluating the baseline drift correction algorithm. Initially, the HAPEx sensor
baseline drift presented a large challenge in a very specific regard. Specifically, by choosing to correct
the baseline drift and thereby removing any possible long term (>80 min) background trend in signal
responses to PM2.5 concentrations, the HAPEx signal is effectively an indicator of elevations above those
background trends—aligning well with our primary research objectives. However, the background
trends are captured in the integrated gravimetric measurement resulting in positive overall intercepts
of Equations (7) and (8) modeling total PM2.5 mass concentrations. That being said, improvements
from correcting the baseline drift (increased Pearson’s and Lin’s correlations and decreased RPC)
resulted in significantly higher precision among paired HAPEx monitors at 5-min rolling (R2 = 0.60
to 0.84) and 48-h (R2 = 0.67 to 0.94) averaging times, making relative comparisons among loggers
reliable and achievable. Notably, at 1-min resolution, the impact of the baseline-correction on Pearson’s
r or Lin’s CCC was not significant, yet the reproducibility coefficient of the baseline-corrected data
was lower, suggesting improvements even at very high temporal resolution. Moreover, the baseline
drift correction substantially improved relationships between 48-h mean HAPEx signal and total 48-h
integrated gravimetric PM2.5 mass concentration, explaining more than twice as much variation in 48-h
mean baseline-corrected signal compared to raw signal.

Particle chemistry (e.g., size, composition, reflectivity, shape, etc.) impacts optical sensor responses
causing variation in readings. Measurements of EC and OC mass (as well as ratios of EC/OC) help describe
the chemical make-up of particulates. EC and OC kitchen mass concentrations and resulting EC/OC
ratios were similar to kitchen measurements made in other households in the KN districts 3–5 years ago
during the Research of Emissions Air Quality, Climate and Cooking Technologies in Northern Ghana
REACCTING cookstove study [38], although unfortunately total PM2.5 mass measurements were not
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collected in that study with which to compare. Correlations between mean HAPEx signal and EC, OC
mass concentrations and EC/OC were surprisingly low, as the large variability in HAPEx signal was
mostly explained by dust concentrations. However, when constraining the analysis based on particle
properties to a subset (n = 8) of samples with less than 20% mass as dust, TC (EC + OC) explained 88% of
the variance in mean HAPEx signal, with OC having high correlation (r = 0.92) with meanHAPEx signal.

As anticipated, relative humidity effects on HAPEx signal were found. Firstly, particle coefficient
variation was not well explained by 48-h RH metrics. This is most likely the result of 48-h variability that
cannot be encompassed by mean or HAPEx-weighted mean RH. Rather, correcting pointwise HAPEx
signal by RH was more successful. Pointwise RH corrections increased correlation between mean
48-h HAPEx signal and total PM2.5 mass concentrations, and reduced mean 48-h absolute differences
between paired HAPEx monitors while also reducing trends in those paired differences by RH
(Figure S3, Supplementary Materials).

Particle coefficients and total PM2.5 mass concentrations varied by location and season, yet HAPEx
sensor readings contributed important information in explaining variation in these measures,
demonstrating their utility in this context.

Firstly, in this study, modeled PCs for urban kitchens were significantly higher (~2×) than rural
kitchens, most likely caused by varying PM mixtures emitted from cooking fuels, as the urban
population uses more LPG and charcoal [14,34,40]. However, this variability was also explained by
interactions of dust concentrations and season. Seasonal variation of dust mass fraction, notably in
the “light rainy” season relative to the “dry” season explains variability in PCs.

For comparison, particle coefficients determined for HAPEx monitors deployed in Indian
homes burning biomass as part of NexLeaf’s low-cost PM assessment averaged to 0.223
(4.48 PM2.5 µg·m−3/HAPEx reading), slightly higher than those found here [23]. Local particle
chemistry and environmental factors could explain this difference. However, they did not correct
HAPEx signal for baseline drift and, therefore, their calculated PCs would be higher (higher overall
mean HAPEx readings and, therefore, higher PC). Interestingly, higher agreement was found when
comparing our PCs to those they determined in a laboratory setting exposing HAPEx to woodsmoke
(PC = 0.176, or 5.68 PM2.5 µg·m−3/HAPEx reading). Perhaps this is less surprising when considering
there may have been less baseline drift in the laboratory tests than the field.

In a pilot setting, HAPEx monitors were also deployed in Guatemalan kitchens alongside
pump-and-filter measurements of PM2.5 to measure cooking emissions from 10 gasifier cookstoves
and 10 traditional fires, finding particle coefficients ranging between 0.4 and 0.5 [21]. Again, these PCs
have higher agreement with those from this study when not correcting for baseline drift (PC = 0.479,
Figure 9a).

Secondly, the HAPEx sensor provided significant explanatory information when modeling
total PM2.5 mass concentrations with only measurements from the microenvironment apparatus.
Integrated PM2.5 mass concentrations were substantially lower in urban kitchens and substantially
higher in the “light rainy” season relative to rural kitchens and the “dry” season, respectively. Kitchen
characteristics play a role in total PM2.5 mass concentrations with mixed findings. Kitchens with no
roof or walls, a roof and one wall, roof with four walls, or roof with no walls have higher concentrations
than kitchens with no roof and one wall. Roofs tend to be associated with higher concentrations, which
intuitively makes sense as ventilation is restricted by roofs, except oddly when the kitchen is completely
outdoors with no nearby structures (no roof or walls). Higher HAPEx-weighted mean temperature
and RH are both associated with lower concentrations. One notable difference between the model
incorporating the pointwise RH correction from Wang et al. (Equation (8)) and the model with no
pointwise RH correction (Equation (7)) is the significance of the percentage of summed HAPEx readings
recorded (percbyMCE) when modified combustion efficiency (MCE) was near background (>0.995),
indicative of limited to no combustion activity. In Equation (8), this metric is a significant predictor
(p < 0.05) of lower mean 48-h PM2.5 concentration, whereas it is not a significant factor in Equation (7).
Without knowing the exact explanation for this difference, perhaps the pointwise RH correction



Atmosphere 2019, 10, 400 23 of 27

reduces measurement error in high-humidity environments, resulting in the percbyMCE explaining
more variation in PM2.5. In summary, when incorporating variability explained by covariates such
as season and location (i.e., urban/rural) with RH-corrected and baseline-corrected HAPEx signal,
overall correlations with gravimetric PM2.5 meet the Gold Standard criterion.

Limitations and Opportunities for Improvement

Although reported as most sensitive to PM with aerodynamic diameter between 1 and 3 µm,
the HAPEx Nano is a passive monitor with no size selection inlet; therefore, it does not specifically
discern between fine (PM2.5) and coarse (PM2.5–10) particulates. Developments are underway to make
improvements to subsequent versions of the HAPEx Nano including on-the-fly zeroing, forced flow,
and inlet size selection options [56].

The P3 air quality measurements campaign also included stove use monitoring on all improved
and traditional stoves, proximity activity monitoring [9], personal exposure monitoring, and surveying
in households enlisted in the air quality subset, including all the household samples reported here.
These extra data streams can be layered over kitchen-level measurements to inform time-resolved
HAPEx signal further (e.g., what stove and fuels were used); however, that was beyond the scope
of this paper. Cross-validations of PC and total PM2.5 concentration models, as pursued recently by
Tryner and co-workers in explaining variation in PCs calculated from mid/high-range personal PM2.5

exposure monitors [12], were not possible given the limited number of samples. There is a need for
additional collocations of low-cost sensors with direct measurements of PM2.5 mass concentrations
at high temporal resolution in the field.

Issues encountered with the HAPEx Nano included (1) programming incorrect instrument
settings resulting in logging all zeros (n = 10 deployments or 28,800 min; fortunately, many were
paired with another working monitor); (2) battery failure that went unnoticed due to a lack of clear
indicators (n = 3–5 deployments); (3) firmware settings with not a number (“NaN”) values logged
below −99 (n = 2 deployments or 5680 min); and (3) connectivity issues between HAPEx monitors
and the computer, most likely caused by corrosion of the USB terminal by moisture over the two-year
sampling campaign (8–15 HAPEx monitors). Others reported failure rates >40% in the field, which is
still a major challenge facing the uptake of low-cost tools [20]. Duplicate measurements are highly
recommended. However, it is important to note that the HAPEx signal is a product of on-board,
proprietary firmware algorithms developed by the manufacturer (Climate Solutions Consulting) for
the Sharp GP2Y1010, whereas our signal processing is conducted on raw 1-min outputs from averaged
20-s HAPEx Nano readings; therefore, it is directly applicable to others using the HAPEx Nano (v.3).

5. Conclusions

A low-cost (159 USD), passive, optical PM tool, called the HAPEx Nano, was evaluated in
60 Ghanaian kitchens primarily burning solid biomass and some using liquid propane gas fuels,
representing a real-world field setting. The low-cost PM tool was collocated with high temporal
measurements of temperature, relative humidity, and gaseous combustion emissions (e.g., CO and CO2),
as well as gravimetric pump and filters used to measure 48-h integrated PM2.5 mass concentrations from
a total of 71 kitchen deployments. The 48-h integrated total PM2.5, elemental carbon, organic carbon,
non-carbonaceous organic mass, and non-carbonaceous inorganic mass concentrations were reported
for 62 kitchen areas, showing unexpectedly large contributions from dust, as well as primary biomass
aerosols. A large percentage of measured total PM2.5 mass concentrations, varying across urban
and rural locations, surpassed the World Health Organization interim targets and air quality guideline,
even for dust concentrations alone. A HAPEx signal baseline algorithm was introduced to correct for
large drift in baseline signal and assessed by comparing baseline-corrected and raw paired readings
at variable time resolution (1-min, 5-min, and 48-h), showing significant improvements of agreement
and reproducibility and increased precision at 5-min rolling and 48-h averaging times; however,
these improvements were limited to only increased reproducibility at 1-min readings, suggesting
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more effectiveness at larger time averaging intervals. Relative humidity corrections found in existing
optical PM sensing literature were applied to 1-min and 48-h mean HAPEx signals. Pointwise (1-min)
RH corrections explained more variation in particle coefficients (48-h mean optical-to-gravimetric ratio)
than 48-h mean RH or 48-h HAPEx-signal-weighted mean RH. Sampled kitchen environments are
highly variable with respect to RH, temperature, and gaseous combustion pollutants across 48-h
deployment periods and across seasons, making low-cost optical measurements more challenging
to understand; however, when incorporated in multilinear regression models, they yield valuable
information, resulting in correlations between 48-h mean HAPEx readings and logarithmic gravimetric
PM2.5 mass concentrations of 0.79. Low-cost optical PM monitors represent an expanding and promising
technological domain in household air pollution assessments due to the meaningful spatiotemporal
information they can provide; however, site-specific precautions should be made, and duplicate
monitors should be deployed.

It is often said that low-cost instruments do not live up to their name when considering the resources
needed to quality-check and control the data they record. There is some truth to this concern, especially in
highly variable, complex environments rife with confounders. However, technological advances
and progress in statistical methods are offering researchers the option to deploy small, efficient sensors
at high spatiotemporal resolution to co-measure and integrate potential confounders into subsequent
analysis, displacing study resources from up-front capital to data processing and capacity building
costs [7]. As this trend continues, the onus is on researchers to disseminate, perpetuate, and improve
processing and analysis techniques toward more cost-effective and meaningful research.
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Author Contributions: Conceptualization, M.P.H., K.L.D., and E.R.C.; methodology, E.R.C., M.P.H.; software,
E.R.C., A.M. (Anondo Mukherjee), and T.B.; formal analysis, E.R.C.; laboratory, D.P.; visualization, E.R.C.;
writing—review and editing, E.R.C., K.L.D., M.P.H., and N.B.; project administration; K.L.D., M.D., D.A., A.M.
(Ali Moro), M.P.H., and A.O.

Funding: This research was supported by grants from the US National Institutes of Health Clean Cooking
Implementation Science Network and the National Science Foundation (SES 1528811). Publication of this article
was funded by the University of Colorado Boulder Libraries Open Access Fund.

Acknowledgments: A special thanks goes out to all the P3 study participants for their hospitality, patience
and respect. Thank you to all the staff and field workers at the Navrongo Health Research Center for their hard
work and dedication, without which this study would not have been possible. We are appreciative of Jiayu Li for
sharing sensor data with us from Wang et al. Thank you to family, friends, and mentors for support and guidance.
This work was reviewed and approved by the Institutional Review Boards at the University of Colorado Boulder
and the Navrongo Health Research Center, a part of the Ghana Health Service.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.;
Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury
attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for
the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [CrossRef]

2. Baumgartner, J.; Schauer, J.J.; Ezzati, M.; Lu, L.; Cheng, C.; Patz, J.A.; Bautista, L.E. Indoor Air Pollution
and Blood Pressure in Adult Women Living in Rural China. Environ. Health Perspect. 2011, 119, 1390–1395.
[CrossRef] [PubMed]

3. Burnett, R.T.; Pope, C.A.; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.;
Brauer, M.; et al. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to
Ambient Fine Particulate Matter Exposure. Environ. Health Perspect. 2014, 122, 397–403. [CrossRef] [PubMed]

4. Pope, C.A.; Burnett, R.T.; Turner, M.C.; Cohen, A.; Krewski, D.; Jerrett, M.; Gapstur, S.M.; Thun, M.J.
Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette
Smoke: Shape of the Exposure–Response Relationships. Environ. Health Perspect. 2011, 119, 1616–1621.
[CrossRef] [PubMed]

http://www.mdpi.com/2073-4433/10/7/400/s1
http://dx.doi.org/10.1016/S0140-6736(12)61766-8
http://dx.doi.org/10.1289/ehp.1003371
http://www.ncbi.nlm.nih.gov/pubmed/21724522
http://dx.doi.org/10.1289/ehp.1307049
http://www.ncbi.nlm.nih.gov/pubmed/24518036
http://dx.doi.org/10.1289/ehp.1103639
http://www.ncbi.nlm.nih.gov/pubmed/21768054


Atmosphere 2019, 10, 400 25 of 27

5. Amegah, A.K. Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in
Sub-Saharan Africa? Environ. Pollut. 2018, 241, 1132–1137. [CrossRef] [PubMed]

6. Kumar, P.; Skouloudis, A.N.; Bell, M.; Viana, M.; Carotta, M.C.; Biskos, G.; Morawska, L. Real-time sensors
for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ.
2016, 560–561, 150–159. [CrossRef]

7. Pillarisetti, A.; Allen, T.; Ruiz-Mercado, I.; Edwards, R.; Chowdhury, Z.; Garland, C.; Hill, L.D.; Johnson, M.;
Litton, C.D.; Lam, N.L.; et al. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air
Pollution Exposures in Rural Households. Sensors 2017, 17, 1879. [CrossRef]

8. Lee, A.; Adobamen, P.R.O.C.; Agboghoroma, O.; Ahmed, F.O.; Aigbokhaode, A.; Amusa, G.A.; Avokpaho, E.;
Awokola, B.; Ibeh, J.; Isiguzo, G.; et al. Household air pollution: A call to action. Lancet Respir. Med. 2015,
3, e1–e2. [CrossRef]

9. Piedrahita, R.; Coffey, E.; Hagar, Y.; Kanyomse, E.; Verploeg, K.; Wiedinmyer, C.; Dickinson, K.L.;
Oduro, A.R.; Hannigan, M.P. Attributing air pollutant exposure to emission sources with proximity
sensing. Atmosphere 2019, 10, 395. [CrossRef]

10. Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A.R. Laboratory assessment of low-cost PM monitors.
J. Aerosol Sci. 2016, 102, 29–40. [CrossRef]

11. Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Field evaluation of a low-cost indoor air quality
monitor to quantify exposure to pollutants in residential environments. J. Sens. Sens. Syst. 2018, 7, 373–388.
[CrossRef]

12. Tryner, J.; Good, N.; Wilson, A.; Clark, M.L.; Peel, J.L.; Volckens, J. Variation in gravimetric correction factors
for nephelometer-derived estimates of personal exposure to PM2.5. Environ. Pollut. 2019, 250, 251–261.
[CrossRef] [PubMed]

13. Gold Standard. Methodology to Estimate and Verify Averted Mortality and Disability Adjusted Life Years (ADALYs)
from Cleaner Household Air; Gold Standard Foundation: Berkeley, CA, USA, 2017.

14. Dickinson, K.L.; Dalaba, M.; Brown, Z.S.; Alirigia, R.; Coffey, E.R.; Mesenbring, E.; Achazanaga, M.; Agao, D.;
Ali, M.; Kanyomse, E.; et al. Prices, peers, and perceptions (P3): Study protocol for improved biomass
cookstove project in northern Ghana. BMC Public Health 2018, 18, 1209. [CrossRef] [PubMed]

15. Ofosu, F.G.; Hopke, P.K.; Aboh, I.J.K.; Bamford, S.A. Biomass burning contribution to ambient air particulate
levels at Navrongo in the Savannah zone of Ghana. J. Air Waste Manag. Assoc. 2013, 63, 1036–1045. [CrossRef]
[PubMed]

16. Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three
Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077.
[CrossRef]

17. Li, J.; Biswas, P. Optical Characterization Studies of a Low-Cost Particle Sensor. Aerosol Air Qual. Res. 2017,
17, 1691–1704. [CrossRef]

18. Patel, S.; Li, J.; Pandey, A.; Pervez, S.; Chakrabarty, R.K.; Biswas, P. Spatio-temporal measurement of indoor
particulate matter concentrations using a wireless network of low-cost sensors in households using solid
fuels. Environ. Res. 2017, 152, 59–65. [CrossRef]

19. Li, J.; Li, H.; Ma, Y.; Wang, Y.; Abokifa, A.A.; Lu, C.; Biswas, P. Spatiotemporal distribution of indoor
particulate matter concentration with a low-cost sensor network. Build. Environ. 2018, 127, 138–147.
[CrossRef]

20. Curto, A.; Donaire-Gonzalez, D.; Barrera-Gómez, J.; Marshall, J.D.; Nieuwenhuijsen, M.J.; Wellenius, G.A.;
Tonne, C. Performance of low-cost monitors to assess household air pollution. Environ. Res. 2018, 163, 53–63.
[CrossRef]

21. Hatfield, M.; Bentson, S. A CCT and KPT field studies in Myanmar and Guatemala aka Experimentation
and evaluation of gravimetric subsets. In Proceedings of the Ethos, Kirkland, WA, USA, 28 January 2017.

22. Climate Solutions Consulting. HAPEx Nano User Manual. Available online: https://docs.google.com/document/d/1x_
KOeX6-zPY2lVVeiGooEn-JXXH3eOuKYHoBX-yViqI/edit?usp=drive_web&ouid=116608276322283961951&usp=

embed_facebook (accessed on 13 May 2019).
23. NexLeaf Analytics. Transparent Climate and Health Metrics: An Open Data Dashboard and Wireless

Platform for Cookstove Monitoring. 28 February 2017. Available online: https://nexleaf.org/reports/WB_
Final_Report_Compressed.pdf (accessed on 3 June 2019).

http://dx.doi.org/10.1016/j.envpol.2018.06.044
http://www.ncbi.nlm.nih.gov/pubmed/30029322
http://dx.doi.org/10.1016/j.scitotenv.2016.04.032
http://dx.doi.org/10.3390/s17081879
http://dx.doi.org/10.1016/S2213-2600(14)70288-7
http://dx.doi.org/10.3390/atmos10070395
http://dx.doi.org/10.1016/j.jaerosci.2016.08.010
http://dx.doi.org/10.5194/jsss-7-373-2018
http://dx.doi.org/10.1016/j.envpol.2019.03.121
http://www.ncbi.nlm.nih.gov/pubmed/30999202
http://dx.doi.org/10.1186/s12889-018-6116-z
http://www.ncbi.nlm.nih.gov/pubmed/30373560
http://dx.doi.org/10.1080/10962247.2013.783888
http://www.ncbi.nlm.nih.gov/pubmed/24151679
http://dx.doi.org/10.1080/02786826.2015.1100710
http://dx.doi.org/10.4209/aaqr.2017.02.0085
http://dx.doi.org/10.1016/j.envres.2016.10.001
http://dx.doi.org/10.1016/j.buildenv.2017.11.001
http://dx.doi.org/10.1016/j.envres.2018.01.024
https://docs.google.com/document/d/1x_KOeX6-zPY2lVVeiGooEn-JXXH3eOuKYHoBX-yViqI/edit?usp=drive_web&ouid=116608276322283961951&usp=embed_facebook
https://docs.google.com/document/d/1x_KOeX6-zPY2lVVeiGooEn-JXXH3eOuKYHoBX-yViqI/edit?usp=drive_web&ouid=116608276322283961951&usp=embed_facebook
https://docs.google.com/document/d/1x_KOeX6-zPY2lVVeiGooEn-JXXH3eOuKYHoBX-yViqI/edit?usp=drive_web&ouid=116608276322283961951&usp=embed_facebook
https://nexleaf.org/reports/WB_Final_Report_Compressed.pdf
https://nexleaf.org/reports/WB_Final_Report_Compressed.pdf


Atmosphere 2019, 10, 400 26 of 27

24. Budde, M.; Busse, M.; Beigl, M. Investigating the use of commodity dust sensors for the embedded
measurement of particulate matter. In Proceedings of the 2012 Ninth International Conference on Networked
Sensing (INSS), Antwerp, Belgium, 11–14 June 2012; pp. 1–4.

25. Casey, J.G.; Collier-Oxandale, A.; Hannigan, M. Performance of artificial neural networks and linear models
to quantify 4 trace gas species in an oil and gas production region with low-cost sensors. Sens. Actuators
B Chem. 2019, 283, 504–514. [CrossRef]

26. Casey, J.G.; Hannigan, M.P. Testing the performance of field calibration techniques for low-cost gas sensors in
new deployment locations: Across a county line and across Colorado. Atmos. Meas. Tech. 2018, 11, 6351–6378.
[CrossRef]

27. Casey, J.G.; Ortega, J.; Coffey, E.; Hannigan, M. Low-cost measurement techniques to characterize the influence
of home heating fuel on carbon monoxide in Navajo homes. Sci. Total Environ. 2018, 625, 608–618. [CrossRef]
[PubMed]

28. Cheadle, L.C.; Oltmans, S.J.; Petron, G.; Schnell, R.C.; Mattson, E.J.; Herndon, S.C.; Thompson, A.M.;
Blake, D.R.; McClure-Begley, A. Surface ozone in the Colorado northern Front Range and the influence of
oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014. Elem. Sci. Anth. 2017, 5, 61.
[CrossRef]

29. Cheadle, L.; Deanes, L.; Sadighi, K.; Gordon Casey, J.; Collier-Oxandale, A.; Hannigan, M. Quantifying
Neighborhood-Scale Spatial Variations of Ozone at Open Space and Urban Sites in Boulder, Colorado Using
Low-Cost Sensor Technology. Sensors 2017, 17, 2072. [CrossRef] [PubMed]

30. Coffey, E.R.; Muvandimwe, D.; Hagar, Y.; Wiedinmyer, C.; Kanyomse, E.; Piedrahita, R.; Dickinson, K.L.;
Oduro, A.; Hannigan, M.P. New Emission Factors and Efficiencies from in-Field Measurements of Traditional
and Improved Cookstoves and Their Potential Implications. Environ. Sci. Technol. 2017, 51, 12508–12517.
[CrossRef]

31. Collier-Oxandale, A.; Casey, J.G.; Piedrahita, R.; Ortega, J.; Halliday, H.; Johnston, J.; Hannigan, M.P.
Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments.
Atmos. Meas. Tech. 2018, 11, 3569–3594. [CrossRef]

32. Collier-Oxandale, A.; Coffey, E.; Thorson, J.; Johnston, J.; Hannigan, M. Comparing Building
and Neighborhood-Scale Variability of CO2 and O3 to Inform Deployment Considerations for Low-Cost
Sensor System Use. Sensors 2018, 18, 1349. [CrossRef]

33. Collier-Oxandale, A.M.; Thorson, J.; Halliday, H.; Milford, J.; Hannigan, M. Understanding the ability of
low-cost MOx sensors to quantify ambient VOCs. Atmos. Meas. Tech. 2019, 12, 1441–1460. [CrossRef]

34. Dalaba, M.; Alirigia, R.; Mesenbring, E.; Coffey, E.; Brown, Z.; Hannigan, M.; Wiedinmyer, C.; Oduro, A.;
Dickinson, K.L. Liquified Petroleum Gas (LPG) Supply and Demand for Cooking in Northern Ghana.
EcoHealth 2018, 15, 716–728. [CrossRef]

35. Dickinson, K.L.; Kanyomse, E.; Piedrahita, R.; Coffey, E.; Rivera, I.J.; Adoctor, J.; Alirigia, R.; Muvandimwe, D.;
Dove, M.; Dukic, V.; et al. Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern
Ghana (REACCTING): Study rationale and protocol. BMC Public Health 2015, 15, 126. [CrossRef]

36. Masson, N.; Piedrahita, R.; Hannigan, M. Quantification Method for Electrolytic Sensors in Long-Term
Monitoring of Ambient Air Quality. Sensors 2015, 15, 27283–27302. [CrossRef] [PubMed]

37. Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.;
et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring.
Atmos. Meas. Tech. 2014, 7, 3325–3336. [CrossRef]

38. Piedrahita, R.; Kanyomse, E.; Coffey, E.; Xie, M.; Hagar, Y.; Alirigia, R.; Agyei, F.; Wiedinmyer, C.;
Dickinson, K.L.; Oduro, A.; et al. Exposures to and origins of carbonaceous PM2.5 in a cookstove intervention
in Northern Ghana. Sci. Total Environ. 2017, 576, 178–192. [CrossRef] [PubMed]

39. Sadighi, K.; Coffey, E.; Polidori, A.; Feenstra, B.; Lv, Q.; Henze, D.K.; Hannigan, M. Intra-urban spatial
variability of surface ozone in Riverside, CA: Viability and validation of low-cost sensors. Atmos. Meas. Tech.
2018, 11, 1777–1792. [CrossRef]

40. Wiedinmyer, C.; Dickinson, K.; Piedrahita, R.; Kanyomse, E.; Coffey, E.; Hannigan, M.; Alirigia, R.; Oduro, A.
Rural–urban differences in cooking practices and exposures in Northern Ghana. Environ. Res. Lett. 2017,
12, 065009. [CrossRef]

http://dx.doi.org/10.1016/j.snb.2018.12.049
http://dx.doi.org/10.5194/amt-11-6351-2018
http://dx.doi.org/10.1016/j.scitotenv.2017.12.312
http://www.ncbi.nlm.nih.gov/pubmed/29304498
http://dx.doi.org/10.1525/elementa.254
http://dx.doi.org/10.3390/s17092072
http://www.ncbi.nlm.nih.gov/pubmed/28891962
http://dx.doi.org/10.1021/acs.est.7b02436
http://dx.doi.org/10.5194/amt-11-3569-2018
http://dx.doi.org/10.3390/s18051349
http://dx.doi.org/10.5194/amt-12-1441-2019
http://dx.doi.org/10.1007/s10393-018-1351-4
http://dx.doi.org/10.1186/s12889-015-1414-1
http://dx.doi.org/10.3390/s151027283
http://www.ncbi.nlm.nih.gov/pubmed/26516860
http://dx.doi.org/10.5194/amt-7-3325-2014
http://dx.doi.org/10.1016/j.scitotenv.2016.10.069
http://www.ncbi.nlm.nih.gov/pubmed/27788434
http://dx.doi.org/10.5194/amt-11-1777-2018
http://dx.doi.org/10.1088/1748-9326/aa7036


Atmosphere 2019, 10, 400 27 of 27

41. Piedrahita, R.; Coffey, E.; Kanyomse, E.; Hagar, Y.; Wiedinmyer, C.; Dickinson, K.L.; Oduro, A.R.;
Hannigan, M.P. Exposures to carbon monoxide in a cookstove intervention in Northern Ghana.
Atmosphere 2019. In press.

42. Dutton, S.J.; Schauer, J.J.; Vedal, S.; Hannigan, M.P. PM2.5 characterization for time series studies: Pointwise
uncertainty estimation and bulk speciation methods applied in Denver. Atmos. Environ. 2009, 43, 1136–1146.
[CrossRef]

43. Reece, S.M.; Sinha, A.; Grieshop, A.P. Primary and Photochemically Aged Aerosol Emissions from Biomass
Cookstoves: Chemical and Physical Characterization. Environ. Sci. Technol. 2017, 51, 9379–9390. [CrossRef]

44. Wu, C.-F.; Delfino, R.J.; Floro, J.N.; Samimi, B.S.; Quintana, P.J.E.; Kleinman, M.T.; Liu, L.-J.S. Evaluation
and quality control of personal nephelometers in indoor, outdoor and personal environments. J. Expo. Anal.
Environ. Epidemiol. 2005, 15, 99–110. [CrossRef]

45. Soneja, S.; Chen, C.; Tielsch, J.M.; Katz, J.; Zeger, S.L.; Checkley, W.; Curriero, F.C.; Breysse, P.N. Humidity
and Gravimetric Equivalency Adjustments for Nephelometer-Based Particulate Matter Measurements of
Emissions from Solid Biomass Fuel Use in Cookstoves. Int. J. Environ. Res. Public Health 2014, 11, 6400–6416.
[CrossRef]

46. Richards, L.W.; Alcorn, S.H.; McDade, C.; Couture, T.; Lowenthal, D.; Chow, J.C.; Watson, J.C. Optical
properties of the San Joaquin Valley aerosol collected during the 1995 integrated monitoring study.
Atmos. Environ. 1999, 33, 4787–4795. [CrossRef]

47. Chakrabarti, B.; Fine, P.M.; Delfino, R.; Sioutas, C. Performance evaluation of the active-flow personal
DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure
measurements. Atmos. Environ. 2004, 38, 3329–3340. [CrossRef]

48. Laulainen, N.S. Summary of Conclusions and Recommendations from a Visibility Science Workshop;
Pacific Northwest Lab.: Richland, WA, USA, 1993.

49. Oduro, A.R.; Wak, G.; Azongo, D.; Debpuur, C.; Wontuo, P.; Kondayire, F.; Welaga, P.; Bawah, A.; Nazzar, A.;
Williams, J.; et al. Profile of the Navrongo Health and Demographic Surveillance System. Int. J. Epidemiol.
2012, 41, 968–976. [CrossRef] [PubMed]

50. Piedrahita, R.; Dickinson, K.L.; Kanyomse, E.; Coffey, E.; Alirigia, R.; Hagar, Y.; Rivera, I.; Oduro, A.; Dukic, V.;
Wiedinmyer, C.; et al. Assessment of cookstove stacking in Northern Ghana using surveys and stove use
monitors. Energy Sustain. Dev. 2016, 34, 67–76. [CrossRef]

51. Klein, R. Bland-Altman and Correlation Plot. Program documentation. Vers. Ran Klein. Bland-Altman
and Correlation Plot. 7 December 2018. Available online: https://www.mathworks.com/matlabcentral/
fileexchange/45049-bland-altman-and-correlation-plot&gt (accessed on 31 May 2019).

52. Matthew, R. F_CCC. F_CCC. 24 April 2018. Available online: https://www.mathworks.com/matlabcentral/
fileexchange/66896-f_ccc&gt (accessed on 31 May 2019).

53. Morel, P. Gramm: Grammar of graphics plotting in Matlab. J. Open Source Softw. 2018, 3, 568–571. [CrossRef]
54. World Health Organization. WHO Air Quality Guidelines for Particulat Ematter, Ozoen, Nitrogen Dioxide

and Sulfur Dioxide: Global Update 2005; World Health Organization: Geneva, Switzerland, 2005.
55. Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution

of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [CrossRef]
56. Climate Solutions Consulting. Lab and Field Validation. In Proceedings of the Ethos, Kirkland, WA, USA,

January 2017.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.atmosenv.2008.10.003
http://dx.doi.org/10.1021/acs.est.7b01881
http://dx.doi.org/10.1038/sj.jea.7500351
http://dx.doi.org/10.3390/ijerph110606400
http://dx.doi.org/10.1016/S1352-2310(99)00267-8
http://dx.doi.org/10.1016/j.atmosenv.2004.03.007
http://dx.doi.org/10.1093/ije/dys111
http://www.ncbi.nlm.nih.gov/pubmed/22933645
http://dx.doi.org/10.1016/j.esd.2016.07.007
https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot&gt
https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot&gt
https://www.mathworks.com/matlabcentral/fileexchange/66896-f_ccc&gt
https://www.mathworks.com/matlabcentral/fileexchange/66896-f_ccc&gt
http://dx.doi.org/10.21105/joss.00568
http://dx.doi.org/10.1016/j.aeolia.2013.09.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Background 
	Materials and Methodology 
	Low-Cost PM Tool Selection 
	Household Measurements 
	The G-Pod (Continuous Gas Phase Measurements) 
	Gravimetric Filter Sampling (Cumulative PM Measurements) 
	Low-Cost PM Monitor: HAPEx Nano (Continuous PM Measurements) 

	Quality Assurance and Quality Control 
	Gravimetric Filter Sampling and Analysis 
	G-Pod 
	HAPEx Signal Processing 
	HAPEx and Environmental Measures of Central Tendency 

	Modeling Gravimetric PM2.5 Concentrations and Particle Coefficients with Low-Cost Sensors 

	Results 
	Cumulative Gravimetric and Carbonaceous PM2.5 
	Low-Cost Monitor Performance and Baseline Signal Correction 
	High Temporal Reproducibility: Base and Threshold Signal Filters 
	Lower Temporal Reproducibility: Paired Mean HAPEx 48-h Agreement 

	Encompassing Environmental Variability in Kitchen Areas toward Understanding Effects on Low-Cost Sensor Readings 
	Baseline Correction Quality Check: Low-Cost Optical Sensor vs. Gravimetric Filter 
	Applying Pointwise RH Corrections from Literature 
	Low-Cost Sensor’s Ability to Predict Gravimetric Filter Measures 
	Modeling Particle Coefficient 
	Modeling Gravimetric PM2.5 Concentration 


	Discussion 
	Conclusions 
	References

