13 research outputs found

    Lactate production is a prioritized feature of adipocyte metabolism

    Get PDF
    Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes. Insulin treatment increased glucose uptake and conversion to lactate, with the latter responding more to insulin than did other metabolic fates of glucose. However, lactate production did not just serve as a mechanism to dispose of excess glucose, because we also observed that lactate production in adipocytes did not solely depend on glucose availability and even occurred independently of glucose metabolism. This suggests that lactate production is prioritized in adipocytes. Furthermore, knocking down lactate dehydrogenase specifically in the fat body of Drosophila flies lowered circulating lactate and improved whole-body glucose disposal. These results emphasize that lactate production is an additional metabolic role of adipose tissue beyond lipid storage and release

    Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy.

    Get PDF
    Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High- resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, eluci- dating mechanisms that may underlie genetic susceptibility to heart failure in human populations

    Insulin signaling requires glucose to promote lipid anabolism in adipocytes

    Get PDF
    Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride–glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo. Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism

    Dissecting the biology of mTORC1 beyond rapamycin

    No full text
    Rapamycin extends maximal life span and increases resistance to starvation in many organisms. The beneficial effects of rapamycin are thought to be mediated by its inhibitory effects on the mechanistic target of rapamycin complex 1 (mTORC1), although it only partially inhibits the kinase activity of mTORC1. Other mTOR kinase inhibitors have been developed, such as Torin-1, but these readily cross-react with mTORC2. Here, we report the distinct characteristics of a third-generation mTOR inhibitor called RapaLink1. We found that low doses of RapaLink1 inhibited the phosphorylation of all mTORC1 substrates tested, including those whose phosphorylation is sensitive or resistant to inhibition by rapamycin, without affecting mTORC2 activity even after prolonged treatment. Compared with rapamycin, RapaLink1 showed better efficacy for inhibiting mTORC1 and potently blocked cell proliferation and induced autophagy. Moreover, using RapaLink1, we demonstrated that mTORC1 and mTORC2 exerted differential effects on cell glycolysis and glucose uptake. Last, we found that RapaLink1 and rapamycin had opposing effects on starvation resistance in Drosophila. Consistent with the effects of RapaLink1, genetic blockade of mTORC1 activity made flies more sensitive to starvation, reflecting the complexity of the mTORC1 network that extends beyond effects that can be inhibited by rapamycin. These findings extend our understanding of mTOR biology and provide insights into some of the beneficial effects of rapamycin

    IP3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of dystrophic mice

    No full text
    Duchenne muscular dystrophy (DMD) is characterized by a severe and progressive destruction of muscle fibers associated with altered Ca2+ homeostasis. We have previously shown that the IP3 receptor (IP3R) plays a role in elevating basal cytoplasmic Ca2+ and that pharmacological blockade of IP3R restores muscle function. Moreover, we have shown that the IP3R pathway negatively regulates autophagy by controlling mitochondrial Ca2+ levels. Nevertheless, it remains unclear whether IP3R is involved in abnormal mitochondrial Ca2+ levels, mitochondrial dynamics, or autophagy and mitophagy observed in adult DMD skeletal muscle. Here, we show that the elevated basal autophagy and autophagic flux levels were normalized when IP3R was downregulated in mdx fibers. Pharmacological blockade of IP3R in mdx fibers restored both increased mitochondrial Ca2+ levels and mitochondrial membrane potential under resting conditions. Interestingly, mdx mitochondria changed from a fission to an elongated state after IP3R knockdown, and the elevated mitophagy levels in mdx fibers were normalized. To our knowledge, this is the first study associating IP3R1 activity with changes in autophagy, mitochondrial Ca2+ levels, mitochondrial membrane potential, mitochondrial dynamics, and mitophagy in adult mouse skeletal muscle. Moreover, these results suggest that increased IP3R activity in mdx fibers plays an important role in the pathophysiology of DMD. Overall, these results lead us to propose the use of specific IP3R blockers as a new pharmacological treatment for DMD, given their ability to restore both autophagy/mitophagy and mitochondrial function

    IP3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of dystrophic mice

    No full text
    Duchenne muscular dystrophy (DMD) is characterized by a severe and progressive destruction of muscle fibers associated with altered Ca2+ homeostasis. We have previously shown that the IP3 receptor (IP3R) plays a role in elevating basal cytoplasmic Ca2+ and that pharmacological blockade of IP3R restores muscle function. Moreover, we have shown that the IP3R pathway negatively regulates autophagy by controlling mitochondrial Ca2+ levels. Nevertheless, it remains unclear whether IP3R is involved in abnormal mitochondrial Ca2+ levels, mitochondrial dynamics, or autophagy and mitophagy observed in adult DMD skeletal muscle. Here, we show that the elevated basal autophagy and autophagic flux levels were normalized when IP3R was downregulated in mdx fibers. Pharmacological blockade of IP3R in mdx fibers restored both increased mitochondrial Ca2+ levels and mitochondrial membrane potential under resting conditions. Interestingly, mdx mitochondria changed from a fission to an elongated state after IP3R knockdown, and the elevated mitophagy levels in mdx fibers were normalized. To our knowledge, this is the first study associating IP3R1 activity with changes in autophagy, mitochondrial Ca2+ levels, mitochondrial membrane potential, mitochondrial dynamics, and mitophagy in adult mouse skeletal muscle. Moreover, these results suggest that increased IP3R activity in mdx fibers plays an important role in the pathophysiology of DMD. Overall, these results lead us to propose the use of specific IP3R blockers as a new pharmacological treatment for DMD, given their ability to restore both autophagy/mitophagy and mitochondrial function

    Leveraging genetic diversity to identify small molecules that reverse mouse skeletal muscle insulin resistance

    No full text
    Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. ‘Diversity Outbred in Australia (DOz)’ is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle’s contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focusing on negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin resistance. We sought to perturb this network and restore insulin action with small molecules by integrating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the Prestwick chemical library. These complementary approaches identified the antibiotic thiostrepton as an insulin resistance reversal agent. Subsequent validation in ex vivo insulin-resistant mouse muscle and palmitate-induced insulin-resistant myotubes demonstrated potent insulin action restoration, potentially via upregulation of glycolysis. This work demonstrates the value of a drug-centric framework to validate systems-level analysis by identifying potential therapeutics for insulin resistance

    A high-content endogenous GLUT4 trafficking assay reveals new aspects of adipocyte biology.

    No full text
    Funder: Wellcome-MRC, Institute of Metabolic Science, Metabolic Research Laboratories, Imaging CoreInsulin-induced GLUT4 translocation to the plasma membrane in muscle and adipocytes is crucial for whole-body glucose homeostasis. Currently, GLUT4 trafficking assays rely on overexpression of tagged GLUT4. Here we describe a high-content imaging platform for studying endogenous GLUT4 translocation in intact adipocytes. This method enables high fidelity analysis of GLUT4 responses to specific perturbations, multiplexing of other trafficking proteins and other features including lipid droplet morphology. Using this multiplexed approach we showed that Vps45 and Rab14 are selective regulators of GLUT4, but Trarg1, Stx6, Stx16, Tbc1d4 and Rab10 knockdown affected both GLUT4 and TfR translocation. Thus, GLUT4 and TfR translocation machinery likely have some overlap upon insulin-stimulation. In addition, we identified Kif13A, a Rab10 binding molecular motor, as a novel regulator of GLUT4 traffic. Finally, comparison of endogenous to overexpressed GLUT4 highlights that the endogenous GLUT4 methodology has an enhanced sensitivity to genetic perturbations and emphasises the advantage of studying endogenous protein trafficking for drug discovery and genetic analysis of insulin action in relevant cell types
    corecore