16 research outputs found

    Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya

    Get PDF
    Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N2O). While a number of studies have investigated the effects of excreta on soil N2O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N2O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N2O and carbon dioxide (CO2) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N2O and CO2 fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO2 and N2O fluxes during both dry and wet seasons. On average, the N2O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N2O and CO2 emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N2O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N2O EF of 0.14%, which is one magnitude lower than the IPCC default N2O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N2O emissions from excreta deposition on tropical rangelands

    Leveraging research infrastructure co-location to evaluate constraints on terrestrial carbon cycling in northern European forests

    Get PDF
    Integrated long-term, in-situ observations are needed to document ongoing environmental change, to "ground-truth" remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location

    Amplifying Signals and avoiding surprises: Potential synergies between ICOS and eLTER at the Water-Climate-Greenhouse Gas nexus

    Get PDF
    Environmental thresholds. tipping points and subsequent regime shifts associated with the water/climate/greenhouse gas nexus pose a genuine threat to sustainability. Both the ongoing forest dieback in Central Europe caused by the extreme droughts of the last years and the effect of global warming on ecosystem functioning have the potential to cause ecological surprise (sensu Lindenmayer et al. 2010) where ecosystems are pushed into new, unexpected and usually undesirable states. Formulating appropriate scientific and societal responses to such regime shifts requires breadth, depth, intensity and duration of environmental, ecological and socio-ecological monitoring. Broad geographic coverage to encompass relevant biophysical and societal gradients, consideration of all appropriate parameters, adequate measurement frequency and long-term, standardized observations are all needed to provide reliable early warnings of severe environmental change, test ecosystem models, avoid double counting in carbon accounting and to reduce the likelihood of undesirable ecological outcomes. This is especially true of events driven by simultaneous changes in climate, the water cycle and human activities. Well-supported, site-based research infrastructures (RIs; e.g., eLTER and ICOS) are essential tools with the necessary breadth, depth, intensity and duration for early detection and attribution of environmental change. Individually, the eLTER and ICOS RIs generate a wealth of data supporting the ecosystem and carbon research communities. Achieving synergies between the two RIs can add value to both communities and potentially offer meaningful insight into the European water-climate-greenhouse gas nexus. The unique insights into processes and mechanisms of ecosystem dynamics and functioning obtained from high intensity monitoring conducted by the ICOS RI greatly increase the likelihood of detecting signals of environmental change. These signals must be placed into the context of their long-term trajectory and potential societal and environmental drivers. The spatially extensive, long-term, multi-disciplinary monitoring conducted at LTER sites and LTSER platforms under the umbrella of the eLTER programme can provide this context. Here, we outline one potential roadmap for achieving synergies between the ICOS and eLTER RIs focussing on the value of co-location for improved understanding of the water/climate/greenhouse gas nexus. Based on data and experiences from intensively studied research sites, we highlight some of the possibilities for reducing the likelihood of ecological surprise that could result from such synergies.Peer reviewe

    Leveraging research infrastructure co-location to evaluate constraints on terrestrial carbon cycling in northern European forests

    Get PDF
    Integrated long-term, in-situ observations are needed to document ongoing environmental change, to “ground-truth” remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location

    A global, empirical, harmonised dataset of soil organic carbon changes under perennial crops

    Get PDF
    A global, unified dataset on Soil Organic Carbon (SOC) changes under perennial crops has not existed till now. We present a global, harmonised database on SOC change resulting from perennial crop cultivation. It contains information about 1605 paired-comparison empirical values (some of which are aggregated data) from 180 different peer-reviewed studies, 709 sites, on 58 different perennial crop types, from 32 countries in temperate, tropical and boreal areas; including species used for food, bioenergy and bio-products. The database also contains information on climate, soil characteristics, management and topography. This is the first such global compilation and will act as a baseline for SOC changes in perennial crops. It will be key to supporting global modelling of land use and carbon cycle feedbacks, and supporting agricultural policy development

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)
    corecore