14 research outputs found

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    Get PDF
    There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin

    Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination

    Get PDF
    BACKGROUND: The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. METHODS AND PRINCIPAL FINDINGS: In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. CONCLUSION AND SIGNIFICANCE: Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis

    Diagnostic accuracy of a clinical diagnosis of idiopathic pulmonary fibrosis: An international case-cohort study

    Get PDF
    We conducted an international study of idiopathic pulmonary fibrosis (IPF) diagnosis among a large group of physicians and compared their diagnostic performance to a panel of IPF experts. A total of 1141 respiratory physicians and 34 IPF experts participated. Participants evaluated 60 cases of interstitial lung disease (ILD) without interdisciplinary consultation. Diagnostic agreement was measured using the weighted kappa coefficient (\u3baw). Prognostic discrimination between IPF and other ILDs was used to validate diagnostic accuracy for first-choice diagnoses of IPF and were compared using the Cindex. A total of 404 physicians completed the study. Agreement for IPF diagnosis was higher among expert physicians (\u3baw=0.65, IQR 0.53-0.72, p20 years of experience (C-index=0.72, IQR 0.0-0.73, p=0.229) and non-university hospital physicians with more than 20 years of experience, attending weekly MDT meetings (C-index=0.72, IQR 0.70-0.72, p=0.052), did not differ significantly (p=0.229 and p=0.052 respectively) from the expert panel (C-index=0.74 IQR 0.72-0.75). Experienced respiratory physicians at university-based institutions diagnose IPF with similar prognostic accuracy to IPF experts. Regular MDT meeting attendance improves the prognostic accuracy of experienced non-university practitioners to levels achieved by IPF experts

    Late Breaking Abstract - Artificial intelligence-based dec­­­ision support for HRCT stratification in fibrotic lung disease; an international study of 116 observers from 37 countries

    No full text
    Methods: We evaluated a deep learning algorithm (DL), for classifying HRCT based on ATS/ERS/JRS/ALAT IPF guideline criteria (SOFIA), among an international group of radiologists and pulmonologists. Participants evaluated HRCTs from 203 suspected IPF patients, assigning a likelihood score for each of the guideline-based HRCT categories (each 0-100%, summing to 100%). SOFIA scores were then provided, and participants were given the opportunity to revise their scores. Agreement on (weighted kappa) and prognostic accuracy (Cox regression and C-index) of 1) UIP scores, 2) guideline-based diagnosis and 3) INBUILD categorisation (UIP/probable UIP vs indeterminate/alternative diagnosis – i.e., trial screening mode) were evaluated. Results: 116 participants completed the study, including 20 ILD trained radiologists. The majority opinion of ILD radiologists on each HRCT was used as a diagnostic reference standard. SOFIA improved agreement for UIP probability scores among all participants, excluding the ILD radiologists, (0.67 [IQR 0.57-0.73] vs 0.71 [IQR, 0.65-0.76], p=2.1x10-5) and guideline-based diagnoses (0.50 [IQR 0.43-0.54] vs 0.61 [IQR, 0.56-0.66], p=2.8x10-16) and INBUILD categorisation (0.42 [IQR 0.35-0.47] vs 0.56 [IQR, 0.49-0.62], p=7.1x10-19). Prognostic accuracy for UIP probability scores (mortality) were good for radiologist scoring (n=116, C-index=0.60 [IQR 0.58-0.62]), and these improved with the addition of SOFIA (C-index=0.63 [IQR 0.61-0.65], p=3.6x10-12). Conclusion: In pulmonary fibrosis, DL support may improve accuracy of HRCT diagnoses, provide prognostic information and faciliate screening in clinical trials

    Treatment of Idiopathic Pulmonary Fibrosis With Ambrisentan

    No full text
    Background: Idiopathic pulmonary fibrosis (IPF) is characterized by formation and proliferation of fibroblast foci. Endothelin-1 induces lung fibroblast proliferation and contractile activity via the endothelin A (ETA) receptor. Objective: To determine whether ambrisentan, an ETA receptor- selective antagonist, reduces the rate of IPF progression. Design: Randomized, double-blind, placebo-controlled, eventdriven trial. (ClinicalTrials.gov: NCT00768300) Setting: Academic and private hospitals. Participants: Patients with IPF aged 40 to 80 years with minimal or no honeycombing on high-resolution computed tomography scans. Intervention: Ambrisentan, 10 mg/d, or placebo. Measurements: Time to disease progression, defined as death, respiratory hospitalization, or a categorical decrease in lung function. Results: The study was terminated after enrollment of 492 patients (75% of intended enrollment; mean duration of exposure to study medication, 34.7 weeks) because an interim analysis indicated a low likelihood of showing efficacy for the end point by the scheduled end of the study. Ambrisentan-treated patients were more likely to meet the prespecified criteria for disease progression (90 [27.4%] vs. 28 [17.2%] patients; P = 0.010; hazard ratio, 1.74 [95% CI, 1.14 to 2.66]). Lung function decline was seen in 55 (16.7%) ambrisentan-treated patients and 19 (11.7%) placebotreated patients (P = 0.109). Respiratory hospitalizations were seen in 44 (13.4%) and 9 (5.5%) patients in the ambrisentan and placebo groups, respectively (P =0.007). Twenty-six (7.9%) patients who received ambrisentan and 6 (3.7%) who received placebo died (P = 0.100). Thirty-two (10%) ambrisentan-treated patients and 16 (10%) placebo-treated patients had pulmonary hypertension at baseline, and analysis stratified by the presence of pulmonary hypertension revealed similar results for the primary end point. Limitation: The study was terminated early. Conclusion: Ambrisentan was not effective in treating IPF and may be associated with an increased risk for disease progression and respiratory hospitalizations. Primary Funding Source: Gilead Sciences. © 2013 American College of Physicians

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    No full text
    corecore