422 research outputs found
Achieving global malaria eradication in changing landscapes.
Land use and land cover changes, such as deforestation, agricultural expansion and urbanization, are one of the largest anthropogenic environmental changes globally. Recent initiatives to evaluate the feasibility of malaria eradication have highlighted impacts of landscape changes on malaria transmission and the potential of these changes to undermine malaria control and elimination efforts. Multisectoral approaches are needed to detect and minimize negative impacts of land use and land cover changes on malaria transmission while supporting development aiding malaria control, elimination and ultimately eradication. Pathways through which land use and land cover changes disrupt social and ecological systems to increase or decrease malaria risks are outlined, identifying priorities and opportunities for a global malaria eradication campaign. The impacts of land use and land cover changes on malaria transmission are complex and highly context-specific, with effects changing over time and space. Landscape changes are only one element of a complex development process with wider economic and social dimensions affecting human health and wellbeing. While deforestation and other landscape changes threaten to undermine malaria control efforts and have driven the emergence of zoonotic malaria, most of the malaria elimination successes have been underpinned by agricultural development and land management. Malaria eradication is not feasible without addressing these changing risks while, conversely, consideration of malaria impacts in land management decisions has the potential to significantly accelerate progress towards eradication. Multisectoral cooperation and approaches to linking malaria control and environmental science, such as conducting locally relevant ecological monitoring, integrating landscape data into malaria surveillance systems and designing environmental management strategies to reduce malaria burdens, are essential to achieve malaria eradication
Exposure to environmental stressors result in increased viral load and further reduction of production parameters in pigs experimentally infected with PCV2b
Porcine circovirus type 2 (PCV2) has been identified as the essential, but not sole, underlying infectious component for PCV-associated diseases (PCVAD). Several co-factors have been suggested to convert an infection with PCV2 into the clinical signs of PCVAD, including co-infection with a secondary pathogen and the genetic background of the pig. In the present study, we investigated the role of environmental stressors in the form of changes in environmental temperature and increased stocking-density on viral load in serum and tissue, average daily weight gain (ADG) and food conversion rate (FCR) of pigs experimentally infected with a defined PCV2b strain over an eight week period. These stressors were identified recently as risk factors leading to the occurrence of severe PCVAD on a farm level. In the current study, PCV2-free pigs were housed in separate, environmentally controlled rooms, and the experiment was performed in a 2 × 2 factorial design. In general, PCV2b infection reduced ADG and increased FCR, and these were further impacted on by the environmental stressors. Furthermore, all stressors led to an increased viral load in serum and tissue as assessed by qPCR, although levels did not reach statistical significance. Our data suggest that there is no need for an additional pathogen to develop PCVAD in conventional status pigs, and growth retardation and clinical signs can be induced in PCV2 infected pigs that are exposed to environmental stressors alone
Mimicking superinfection exclusion disrupts alphavirus infection and transmission in the yellow fever mosquito Aedes aegypti
Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1–nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.</p
Increased levels of prolactin receptor expression correlate with the early onset of lupus symptoms and increased numbers of transitional-1 B cells after prolactin treatment
<p>Abstract</p> <p>Background</p> <p>Prolactin is secreted from the pituitary gland and other organs, as well as by cells such as lymphocytes. Prolactin has an immunostimulatory effect and is associated with autoimmune diseases that are characterised by abnormal B cell activation, such as systemic lupus erythematosus (SLE). Our aim was to determine if different splenic B cell subsets express the prolactin receptor and if the presence of prolactin influences these B cell subsets and correlates with development of lupus.</p> <p>Results</p> <p>Using real-time PCR and flow cytometry, we found that different subsets of immature (transitional) and mature (follicular, marginal zone) B cells express different levels of the prolactin receptor and are differentially affected by hyperprolactinaemia. We found that transitional B cells express the prolactin receptor at higher levels compared to mature B cells in C57BL/6 mice and the lupus-prone MRL/lpr and MRL mouse strains. Transitional-1 (T1) B cells showed a higher level of prolactin receptor expression in both MRL/lpr and MRL mice compared to C57BL/6 mice. Hyperprolactinaemia was induced using metoclopramide, which resulted in the development of early symptoms of SLE. We found that T1 B cells are the main targets of prolactin and that prolactin augments the absolute number of T1 B cells, which reflects the finding that this B cell subpopulation expresses the highest level of the prolactin receptor.</p> <p>Conclusions</p> <p>We found that all B cell subsets express the prolactin receptor but that transitional B cells showed the highest prolactin receptor expression levels. Hyperprolactinaemia in mice susceptible to lupus accelerated the disease and increased the absolute numbers of T1 and T3 B cells but not of mature B cells, suggesting a primary effect of prolactin on the early stages of B cell maturation in the spleen and a role of prolactin in B cell differentiation, contributing to SLE onset.</p
Randomized Clinical Trials of obesity treatments in Mexican population. Systematic Review and Meta-Analysis
Background: Mexicans and Mexican Americans share similar culture, genetic background, and predisposition for obesity and diabetes. Randomized clinical trials (RCT) assessing obesity treatments (ObT) are reliable to assess efficacy. To date, there is no systematic review to investigate ObT tested by RCT in Mexican adults.
Methods: We conducted systematic searches in Pubmed, Scopus, and Web of Science to retrieve ObT RCT from 1990 to 2019. The ObT included alternative medicine, pharmacological, nutritional, behavioral, and surgical interventions. The analyzed RCT were at least three months of duration, and reported: BMI, weight, waist circumference, triglycerides, glucose and blood pressure.
Results: We found 634 entries; after removal of duplicates and exclusions based on eligibility criteria, we analyzed 43 and 2 multinational-collaborative studies. Most of the national studies had small sample sizes, and did not have replications from other studies. The nutrition/behavioral interventions were difficult to blind, and most studies had medium to high risk of bias. Random effects meta-analysis of nutritional/behavioral interventions and medications showed effects on BMI, waist circumference, and blood pressure. Simple measures like plain water instead of sweet beverages decreased triglycerides and systolic blood pressure. Participants with obesity and hypertension had beneficial effects with antioxidants, and the treatment with insulin increased weight in those with T2D.
Conclusions: The RCT’s in Mexico reported effects on metabolic components despite small sample sizes and lack of replication. In the future we should analyze ObT in population living on the U.S.-Mexico border; therefore, bi-national collaboration is desirable to disentangle cultural effects on ObT response
Quantifying and modelling the acquisition and retention of lumpy skin disease virus by haematophagus insects reveals clinically but not subclinically-affected cattle are promoters of viral transmission and key targets for control of disease outbreaks
Lumpy skin disease virus (LSDV) is a vector-transmitted poxvirus that causes disease in cattle. Vector species involved in LSDV transmission and their ability to acquire and transmit the virus are poorly characterized. Using a highly representative bovine experimental model of lumpy skin disease, we fed four model vector species (Aedes aegypti, Culex quinquefasciatus, Stomoxys calcitrans, and Culicoides nubeculosus) on LSDV-inoculated cattle in order to examine their acquisition and retention of LSDV. Subclinical disease was a more common outcome than clinical disease in the inoculated cattle. Importantly, the probability of vectors acquiring LSDV from a subclinical animal (0.006) was very low compared with that from a clinical animal (0.23), meaning an insect feeding on a subclinical animal was 97% less likely to acquire LSDV than one feeding on a clinical animal. All four potential vector species studied acquired LSDV from the host at a similar rate, but Aedes aegypti and Stomoxys calcitrans retained the virus for a longer time, up to 8 days. There was no evidence of virus replication in the vector, consistent with mechanical rather than biological transmission. The parameters obtained in this study were combined with data from studies of LSDV transmission and vector life history parameters to determine the basic reproduction number of LSDV in cattle mediated by each of the model species. This reproduction number was highest for Stomoxys calcitrans (19.1), followed by C. nubeculosus (7.1) and Ae. aegypti (2.4), indicating that these three species are potentially efficient transmitters of LSDV; this information can be used to inform LSD control programs. IMPORTANCE Lumpy skin disease virus (LSDV) causes a severe systemic disease characterized by cutaneous nodules in cattle. LSDV is a rapidly emerging pathogen, having spread since 2012 into Europe and Russia and across Asia. The vector-borne nature of LSDV transmission is believed to have promoted this rapid geographic spread of the virus; however, a lack of quantitative evidence about LSDV transmission has hampered effective control of the disease during the current epidemic. Our research shows subclinical cattle play little part in virus transmission relative to clinical cattle and reveals a low probability of virus acquisition by insects at the preclinical stage. We have also calculated the reproductive number of different insect species, therefore identifying efficient transmitters of LSDV. This information is of utmost importance, as it will help to define epidemiological control measures during LSDV epidemics and of particular consequence in resource-poor regions where LSD vaccination may be less than adequate
Widespread loss of the silencing epigenetic mark H3K9me3 in astrocytes and neurons along with hippocampal-dependent cognitive impairment in C9orf72 BAC transgenic mice
Background: Hexanucleotide repeat expansions of the G4C2 motif in a non-coding region of the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Tissues from C9ALS/FTD patients and from mouse models of ALS show RNA foci, dipeptide-repeat proteins, and notably, widespread alterations in the transcriptome. Epigenetic processes regulate gene expression without changing DNA sequences and therefore could account for the altered transcriptome profiles in C9ALS/FTD; here, we explore whether the critical repressive marks H3K9me2 and H3K9me3 are altered in a recently developed C9ALS/FTD BAC mouse model (C9BAC). Results: Chromocenters that constitute pericentric constitutive heterochromatin were visualized as DAPI- or Nucblue-dense foci in nuclei. Cultured C9BAC astrocytes exhibited a reduced staining signal for H3K9me3 (but not for H3K9me2) at chromocenters that was accompanied by a marked decline in the global nuclear level of this mark. Similar depletion of H3K9me3 at chromocenters was detected in astrocytes and neurons of the spinal cord, motor cortex, and hippocampus of C9BAC mice. The alterations of H3K9me3 in the hippocampus of C9BAC mice led us to identify previously undetected neuronal loss in CA1, CA3, and dentate gyrus, as well as hippocampal-dependent cognitive deficits. Conclusions: Our data indicate that a loss of the repressive mark H3K9me3 in astrocytes and neurons in the central nervous system of C9BAC mice represents a signature during neurodegeneration and memory deficit of C9ALS/FTD. © 2020 The Author(s).Indexación: Scopu
DNA Barcoding Bromeliaceae: Achievements and Pitfalls
<div><h3>Background</h3><p>DNA barcoding has been successfully established in animals as a tool for organismal identification and taxonomic clarification. Slower nucleotide substitution rates in plant genomes have made the selection of a DNA barcode for land plants a much more difficult task. The Plant Working Group of the Consortium for the Barcode of Life (CBOL) recommended the two-marker combination <em>rbcL</em>/<em>matK</em> as a pragmatic solution to a complex trade-off between universality, sequence quality, discrimination, and cost.</p> <h3>Methodology/Principal Findings</h3><p>It is expected that a system based on any one, or a small number of plastid genes will fail within certain taxonomic groups with low amounts of plastid variation, while performing well in others. We tested the effectiveness of the proposed CBOL Plant Working Group barcoding <em>markers</em> for land plants in identifying 46 bromeliad species, a group rich in endemic species from the endangered Brazilian Atlantic Rainforest. Although we obtained high quality sequences with the suggested primers, species discrimination in our data set was only 43.48%. Addition of a third marker, <em>trnH–psbA</em>, did not show significant improvement. This species identification failure in Bromeliaceaecould also be seen in the analysis of the GenBank's <em>matK</em> data set. Bromeliaceae's sequence divergence was almost three times lower than the observed for Asteraceae and Orchidaceae. This low variation rate also resulted in poorly resolved tree topologies. Among the three Bromeliaceae subfamilies sampled, Tillandsioideae was the only one recovered as a monophyletic group with high bootstrap value (98.6%). Species paraphyly was a common feature in our sampling.</p> <h3>Conclusions/Significance</h3><p>Our results show that although DNA barcoding is an important tool for biodiversity assessment, it tends to fail in taxonomy complicated and recently diverged plant groups, such as Bromeliaceae. Additional research might be needed to develop markers capable to discriminate species in these complex botanical groups.</p> </div
DNA nanoparticle-mediated thymulin gene therapy prevents airway remodeling in experimental allergic asthma
Thymulin has been shown to present anti-inflammatory and anti-fibrotic properties in experimental lung diseases. We hypothesized that a biologically active thymulin analog gene, methionine serum thymus factor, delivered by highly compacted DNA nanoparticles may prevent lung inflammation and remodeling in a mouse model of allergic asthma. The DNA nanoparticles are composed of a single molecule of plasmid DNA compacted with block copolymers of poly-L-lysine and polyethylene glycol (CK30PEG), which have been found safe in a human phase I/II clinical trial. Thymulin plasmids were detected in the lungs of ovalbumin-challenged asthmatic mice up to 27days after administration of DNA nanoparticles carrying thymulin plasmids. A single dose of DNA nanoparticles carrying thymulin plasmids prevented lung inflammation, collagen deposition and smooth muscle hypertrophy in the lungs of a murine model of ovalbumin-challenged allergic asthma, leading to improved lung mechanics. In the present model of chronic allergic asthma, highly compacted DNA nanoparticles using thymulin analog gene modulated the inflammatory and remodeling processes improving lung mechanics.Instituto de Investigaciones Bioquímicas de La Plat
- …