7 research outputs found

    Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2

    Get PDF
    Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10–20 meter), revisit frequency (five days) and coverage (global). In this context, the European Space Agency launched in 2014 the “Sentinel­2 for Agriculture” project, which aims to prepare the exploitation of Sentinel-2 data for agriculture monitoring through the development of open source processing chains for relevant products. The project generated an unprecedented data set, made of “Sentinel-2 like” time series and in situ data acquired in 2013 over 12 globally distributed sites. Earth Observation time series were mostly built on the SPOT4 (Take 5) data set, which was specifically designed to simulate Sentinel-2. They also included Landsat 8 and RapidEye imagery as complementary data sources. Images were pre-processed to Level 2A and the quality of the resulting time series was assessed. In situ data about cropland, crop type and biophysical variables were shared by site managers, most of them belonging to the “Joint Experiment for Crop Assessment and Monitoring” network. This data set allowed testing and comparing across sites the methodologies that will be at the core of the future “Sentinel­2 for Agriculture” system.Instituto de Clima y AguaFil: Bontemps, Sophie. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgicaFil: Arias, Marcela. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Cara, Cosmin. CS Romania S.A.; RumaniaFil: Dedieu, GĂ©rard. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Guzzonato, Eric. CS SystĂšmes d’Information; FranciaFil: Hagolle, Olivier. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Inglada, Jordi. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Matton, Nicolas. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgicaFil: Morin, David. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Popescu, Ramona. CS Romania S.A.; RumaniaFil: Rabaute, Thierry. CS SystĂšmes d’Information; FranciaFil: Savinaud, Mickael. CS SystĂšmes d’Information; FranciaFil: Sepulcre, Guadalupe. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgicaFil: Valero, Silvia. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Ahmad, Ijaz. Pakistan Space and Upper Atmosphere Research Commission. Space Applications Research Complex. National Agriculture Information Center Directorate; PakistĂĄnFil: BĂ©guĂ©, AgnĂšs. Centre de CoopĂ©ration Internationale en Recherche Agronomique pour le DĂ©velopperment; FranciaFil: Wu, Bingfang. Chinese Academy of Sciences. Institute of Remote Sensing and Digital Earth; RepĂșblica de ChinaFil: De Abelleyra, Diego. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Diarra, Alhousseine. UniversitĂ© Cadi Ayyad. FacultĂ© des Sciences Semlalia; MarruecosFil: Dupuy, StĂ©phane. Centre de CoopĂ©ration Internationale en Recherche Agronomique pour le DĂ©velopperment; FranciaFil: French, Andrew. United States Department of Agriculture. Agricultural Research Service. Arid Land Agricultural Research Center; ArgentinaFil: Akhtar, Ibrar ul Hassan. Pakistan Space and Upper Atmosphere Research Commission. Space Applications Research Complex. National Agriculture Information Center Directorate; PakistĂĄnFil: Kussul, Nataliia. National Academy of Sciences of Ukraine. Space Research Institute and State Space Agency of Ukraine; UcraniaFil: Lebourgeois, Valentine. Centre de CoopĂ©ration Internationale en Recherche Agronomique pour le DĂ©velopperment; FranciaFil: Le Page, Michel. UniversitĂ© Cadi Ayyad. FacultĂ© des Sciences Semlalia. Laboratoire Mixte International TREMA; Marruecos. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Newby, Terrence. Agricultural Research Council; SudĂĄfricaFil: Savin, Igor. V.V. Dokuchaev Soil Science Institute; RusiaFil: VerĂłn, Santiago RamĂłn. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Koetz, Benjamin. European Space Agency. European Space Research Institute; ItaliaFil: Defourny, Pierre. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgic

    Suivi de l'évapotranspiration des cultures irriguées du Sud de la Méditerranée par télédétection multi-capteurs et modélisation globale

    No full text
    With the increasing pressure on water resources accentuated by the climate change threat, irrigated agriculture, especially in semi-arid zone, faced more challenges. Optimal management of water resources is essential in irrigated areas in order to avoid both excessive irrigation and water stress that is harmful to the growth of crops. In this context, proposing a simple, parsimonious and robust, easyto- use tool for monitoring the crop water requirement at different spatial and temporal scales would provide a tangible indicator of irrigation efficiency over irrigated perimeters. This thesis aims to evaluate and adapt several tools for monitoring the evapotranspiration of irrigated crops from the plot scale to the regional scale through the use of multi-sensor and multi-resolution remote sensing observations. Our study area is the Tensift watershed in Morocco, studied by LMI TREMA (Jarlan et al., 2015) and supported by the Tensift observatory. We identified 3 tools: a surface energy balance model (TSEB; Norman et al., 1995) driven by a radiometric temperature observation that provides indirect information on surface water status; the FAO-56 dual crop coefficient approach predicts the hydric status by computing the water balance but requires the know precisely the water input, very difficult to obtain on the plot scale of irrigated perimeters ; global modeling which, as opposed to the first two, is an autonomous approach requiring no external forcing. Firstly, the comparison of the TSEB model simulations with a set of experimental measurements collected on a plot scale during 2 consecutive agricultural seasons and with the results of the calibrated FAO-56 dual crop coefficient approach has shown that : - the TSEB model is very robust and offers acceptable performance for the prediction of evapotranspiration (RMSE <1mm / day during the two agricultural seasons); - a good capabilities of TSEB model for detection water stress; - a good ability also to partition the evapotranspiration between evaporation of the soil and transpiration of the plant. In the second step, we evaluated the predictive capacities of a global model that we developed on the basis of a time series of evapotranspiration observed in the field. Global modeling is based on the theory of the nonlinear dynamic systems theory. If it does not have the explanatory capabilities of the mechanistic models mentioned above, it may be a good alternative for predicting evapotranspiration. The analysis of the horizon of predictability of the global model that we obtained shows a limited interest for the farmers or the managers since this horizon does not exceed 3h. Nevertheless, this approach, very original in this context, remains particularly attractive and opens perspectives. Finally, we have developed a prototype, based on the TSEB model and using only MODIS free products and ERAInterim reanalyses, for monitoring evapotranspiration at Tensift watershed scale and over long periods. After an evaluation of the ERA-Interim products, we evaluated the prototype performance by (1) comparing the predictions of the energy balance components to the experimental data from Tensift observatory and (2) comparing the predicted monthly consumption at the main irrigated perimeters of the region with monthly water supplies provided by the regional office which manages these perimeters. Thus, there is a strong overestimation (almost a factor of 2) of the water consumed compared to the inflow of water, which could be related to the high number of boreholes in the region. This work and the tools developed opens perspectives for piloting and managing agricultural water in semi-arid regions.Avec la pression croissante sur les ressources en eau accentuĂ©e par la menace des changementsglobaux, l'agriculture irriguĂ©e, surtout dans les rĂ©gions semi-arides, se trouve confrontĂ©e Ă  denouvelles exigences. Une gestion optimale des ressources en eau est indispensable dans les pĂ©rimĂštresirriguĂ©s afin d'Ă©viter Ă  la fois l'irrigation excessive et le stress hydrique dommageable aux cultures.Dans ce contexte, proposer un outil simple, parcimonieux et robuste, facile Ă  mettre en placepermettant de suivre le besoin rĂ©el en eau des cultures, Ă  diffĂ©rentes Ă©chelles spatio-temporelles,permettrait d’apporter un indicateur tangible quant Ă  l’efficience de l’irrigation dans les pĂ©rimĂštresirriguĂ©s. Ce travail de thĂšse a pour objectif d’évaluer et d’adapter plusieurs outils de suivi del’évapotranspiration des cultures irriguĂ©es de l’échelle parcellaire Ă  l’échelle rĂ©gionale par l’utilisationde la tĂ©lĂ©dĂ©tection multi-capteurs et multi-rĂ©solution. Notre zone d’étude est le bassin versant duTensift au Maroc, objet d’étude du LMI TREMA (Jarlan et al., 2015) et support de l’observatoireTensift. Nous avons identifiĂ© 3 outils : un modĂšle de bilan d’énergie de surface (TSEB ; Norman et al.,1995) pilotĂ© par une observation de tempĂ©rature radiomĂ©trique qui renseigne indirectement sur l’étathydrique de surface ; l’approche Ă  coefficient cultural double de la FAO-56 (Allen et al., 1998) quiprĂ©dit l’état hydrique de surface par la rĂ©solution d’un bilan hydrique mais nĂ©cessite en contre-partiede connaĂźtre prĂ©cisĂ©ment les apports d’eau, grandeur trĂšs incertaine sur les pĂ©rimĂštres irriguĂ©s Ă l’échelle parcellaire ; la modĂ©lisation globale qui, par opposition aux deux autres, est une approcheautonome ne nĂ©cessitant aucun forçage externe. Dans un premier temps, la confrontation dessimulations du modĂšle TSEB Ă  un ensemble de mesures expĂ©rimentales recueillies Ă  l’échelleparcellaire durant 2 saisons agricoles ainsi qu’à l’approche FAO-56 prĂ©alablement calibrĂ©e sur lesprincipales cultures de notre rĂ©gion d’étude sur la base de travaux antĂ©rieurs a permis de montrer que :- le modĂšle TSEB est trĂšs robuste et offre des performances acceptables pour la prĂ©diction del’évapotranspiration (RMSE < 1mm/jour sur 4 sites lors de deux saisons agricoles) ; - les bonnescapacitĂ©s de cet outil pour la dĂ©tection de stress hydrique ; - une bonne aptitude Ă©galement Ă partitionner l’évapotranspiration entre Ă©vaporation du sol et transpiration de la plante. Dans un 2Ăšmetemps, nous avons Ă©valuĂ© les capacitĂ©s prĂ©dictives d’un modĂšle global que nous avons dĂ©veloppĂ© surla base d’une sĂ©rie temporelle d’évapotranspiration observĂ©e sur le terrain. La modĂ©lisation globale estbasĂ©e sur la thĂ©orie des systĂšmes dynamique non-linĂ©aire. Si elle ne possĂšde pas les capacitĂ©sexplicatives des modĂšles mĂ©canistes Ă©voquĂ©s ci-dessus, peut ĂȘtre une bonne alternative pour laprĂ©vision de l’évapotranspiration. L’analyse de l’horizon de prĂ©visibilitĂ© du modĂšle global que nousavons obtenu montre un intĂ©rĂȘt limitĂ© pour les agriculteurs ou les gestionnaires puisque cet horizonn’excĂšde pas 3h. NĂ©anmoins, cette approche, trĂšs originale dans ce contexte, reste particuliĂšrementsĂ©duisante et ouvre plusieurs perspectives. Enfin, nous avons dĂ©veloppĂ© un prototype « tout satellite »,basĂ© sur le modĂšle TSEB et qui utilise uniquement les produits gratuits MODIS et les rĂ©-analysesERA-Interim, pour le suivi spatialisĂ©e et Ă  long terme de la consommation en eau des cultures dans lebassin versant du Tensift. AprĂšs une Ă©valuation des forçages ERA-Interim, nous avons Ă©valuĂ© laperformance du prototype par (1) confrontation des prĂ©dictions des composantes du bilan d’énergieaux donnĂ©es expĂ©rimentales de l’observation Tensift et (2) confrontation de la consommationmensuelle prĂ©dite au niveau des principaux pĂ©rimĂštres irriguĂ©s de la rĂ©gion aux apports d’eaumensuels fournis par l’office rĂ©gional qui gĂšre ces pĂ©rimĂštres..

    Monitoring of evapotranspiration over irrigated crops in the South Mediterranean region using multi-sensor remote sensing observations and global modeling

    No full text
    Avec la pression croissante sur les ressources en eau accentuĂ©e par la menace des changementsglobaux, l'agriculture irriguĂ©e, surtout dans les rĂ©gions semi-arides, se trouve confrontĂ©e Ă  denouvelles exigences. Une gestion optimale des ressources en eau est indispensable dans les pĂ©rimĂštresirriguĂ©s afin d'Ă©viter Ă  la fois l'irrigation excessive et le stress hydrique dommageable aux cultures.Dans ce contexte, proposer un outil simple, parcimonieux et robuste, facile Ă  mettre en placepermettant de suivre le besoin rĂ©el en eau des cultures, Ă  diffĂ©rentes Ă©chelles spatio-temporelles,permettrait d’apporter un indicateur tangible quant Ă  l’efficience de l’irrigation dans les pĂ©rimĂštresirriguĂ©s. Ce travail de thĂšse a pour objectif d’évaluer et d’adapter plusieurs outils de suivi del’évapotranspiration des cultures irriguĂ©es de l’échelle parcellaire Ă  l’échelle rĂ©gionale par l’utilisationde la tĂ©lĂ©dĂ©tection multi-capteurs et multi-rĂ©solution. Notre zone d’étude est le bassin versant duTensift au Maroc, objet d’étude du LMI TREMA (Jarlan et al., 2015) et support de l’observatoireTensift. Nous avons identifiĂ© 3 outils : un modĂšle de bilan d’énergie de surface (TSEB ; Norman et al.,1995) pilotĂ© par une observation de tempĂ©rature radiomĂ©trique qui renseigne indirectement sur l’étathydrique de surface ; l’approche Ă  coefficient cultural double de la FAO-56 (Allen et al., 1998) quiprĂ©dit l’état hydrique de surface par la rĂ©solution d’un bilan hydrique mais nĂ©cessite en contre-partiede connaĂźtre prĂ©cisĂ©ment les apports d’eau, grandeur trĂšs incertaine sur les pĂ©rimĂštres irriguĂ©s Ă l’échelle parcellaire ; la modĂ©lisation globale qui, par opposition aux deux autres, est une approcheautonome ne nĂ©cessitant aucun forçage externe. Dans un premier temps, la confrontation dessimulations du modĂšle TSEB Ă  un ensemble de mesures expĂ©rimentales recueillies Ă  l’échelleparcellaire durant 2 saisons agricoles ainsi qu’à l’approche FAO-56 prĂ©alablement calibrĂ©e sur lesprincipales cultures de notre rĂ©gion d’étude sur la base de travaux antĂ©rieurs a permis de montrer que :- le modĂšle TSEB est trĂšs robuste et offre des performances acceptables pour la prĂ©diction del’évapotranspiration (RMSE < 1mm/jour sur 4 sites lors de deux saisons agricoles) ; - les bonnescapacitĂ©s de cet outil pour la dĂ©tection de stress hydrique ; - une bonne aptitude Ă©galement Ă partitionner l’évapotranspiration entre Ă©vaporation du sol et transpiration de la plante. Dans un 2Ăšmetemps, nous avons Ă©valuĂ© les capacitĂ©s prĂ©dictives d’un modĂšle global que nous avons dĂ©veloppĂ© surla base d’une sĂ©rie temporelle d’évapotranspiration observĂ©e sur le terrain. La modĂ©lisation globale estbasĂ©e sur la thĂ©orie des systĂšmes dynamique non-linĂ©aire. Si elle ne possĂšde pas les capacitĂ©sexplicatives des modĂšles mĂ©canistes Ă©voquĂ©s ci-dessus, peut ĂȘtre une bonne alternative pour laprĂ©vision de l’évapotranspiration. L’analyse de l’horizon de prĂ©visibilitĂ© du modĂšle global que nousavons obtenu montre un intĂ©rĂȘt limitĂ© pour les agriculteurs ou les gestionnaires puisque cet horizonn’excĂšde pas 3h. NĂ©anmoins, cette approche, trĂšs originale dans ce contexte, reste particuliĂšrementsĂ©duisante et ouvre plusieurs perspectives. Enfin, nous avons dĂ©veloppĂ© un prototype « tout satellite »,basĂ© sur le modĂšle TSEB et qui utilise uniquement les produits gratuits MODIS et les rĂ©-analysesERA-Interim, pour le suivi spatialisĂ©e et Ă  long terme de la consommation en eau des cultures dans lebassin versant du Tensift. AprĂšs une Ă©valuation des forçages ERA-Interim, nous avons Ă©valuĂ© laperformance du prototype par (1) confrontation des prĂ©dictions des composantes du bilan d’énergieaux donnĂ©es expĂ©rimentales de l’observation Tensift et (2) confrontation de la consommationmensuelle prĂ©dite au niveau des principaux pĂ©rimĂštres irriguĂ©s de la rĂ©gion aux apports d’eaumensuels fournis par l’office rĂ©gional qui gĂšre ces pĂ©rimĂštres...With the increasing pressure on water resources accentuated by the climate change threat, irrigated agriculture, especially in semi-arid zone, faced more challenges. Optimal management of water resources is essential in irrigated areas in order to avoid both excessive irrigation and water stress that is harmful to the growth of crops. In this context, proposing a simple, parsimonious and robust, easyto- use tool for monitoring the crop water requirement at different spatial and temporal scales would provide a tangible indicator of irrigation efficiency over irrigated perimeters. This thesis aims to evaluate and adapt several tools for monitoring the evapotranspiration of irrigated crops from the plot scale to the regional scale through the use of multi-sensor and multi-resolution remote sensing observations. Our study area is the Tensift watershed in Morocco, studied by LMI TREMA (Jarlan et al., 2015) and supported by the Tensift observatory. We identified 3 tools: a surface energy balance model (TSEB; Norman et al., 1995) driven by a radiometric temperature observation that provides indirect information on surface water status; the FAO-56 dual crop coefficient approach predicts the hydric status by computing the water balance but requires the know precisely the water input, very difficult to obtain on the plot scale of irrigated perimeters ; global modeling which, as opposed to the first two, is an autonomous approach requiring no external forcing. Firstly, the comparison of the TSEB model simulations with a set of experimental measurements collected on a plot scale during 2 consecutive agricultural seasons and with the results of the calibrated FAO-56 dual crop coefficient approach has shown that : - the TSEB model is very robust and offers acceptable performance for the prediction of evapotranspiration (RMSE <1mm / day during the two agricultural seasons); - a good capabilities of TSEB model for detection water stress; - a good ability also to partition the evapotranspiration between evaporation of the soil and transpiration of the plant. In the second step, we evaluated the predictive capacities of a global model that we developed on the basis of a time series of evapotranspiration observed in the field. Global modeling is based on the theory of the nonlinear dynamic systems theory. If it does not have the explanatory capabilities of the mechanistic models mentioned above, it may be a good alternative for predicting evapotranspiration. The analysis of the horizon of predictability of the global model that we obtained shows a limited interest for the farmers or the managers since this horizon does not exceed 3h. Nevertheless, this approach, very original in this context, remains particularly attractive and opens perspectives. Finally, we have developed a prototype, based on the TSEB model and using only MODIS free products and ERAInterim reanalyses, for monitoring evapotranspiration at Tensift watershed scale and over long periods. After an evaluation of the ERA-Interim products, we evaluated the prototype performance by (1) comparing the predictions of the energy balance components to the experimental data from Tensift observatory and (2) comparing the predicted monthly consumption at the main irrigated perimeters of the region with monthly water supplies provided by the regional office which manages these perimeters. Thus, there is a strong overestimation (almost a factor of 2) of the water consumed compared to the inflow of water, which could be related to the high number of boreholes in the region. This work and the tools developed opens perspectives for piloting and managing agricultural water in semi-arid regions

    Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk.

    No full text
    Understanding biotic changes that occur alongside climate change constitute a research priority of global significance. Here, we address a plant pathogen that poses a serious threat to life on natural oases, where climate change is already taking a toll and severely impacting human subsistence. Fusarium oxysporum f. sp. albedinis is a pathogen that causes dieback disease on date palms, a tree that provides several critical ecosystem services in natural oases; and consequently, of major importance in this vulnerable habitat. Here, we assess the current state of global pathogen spread, we annotate the genome of a sequenced pathogen strain isolated from the native range and we analyse its in silico secretome. The palm dieback pathogen secretes a large arsenal of effector candidates including a variety of toxins, a distinguished profile of secreted in xylem proteins (SIX) as well as an expanded protein family with an N-terminal conserved motif [SG]PC[KR]P that could be involved in interactions with host membranes. Using agrobiodiversity as a strategy to decrease pathogen infectivity, while providing short term resilient solutions, seems to be widely overcome by the pathogen. Hence, the urgent need for future mechanistic research on the palm dieback disease and a better understanding of pathogen genetic diversity

    Modified Penman–Monteith equation for monitoring evapotranspiration of wheat crop: Relationship between the surface resistance and remotely sensed stress index

    No full text
    International audienceEvapotranspiration (ET) plays an essential role for detecting plant water status, estimating crop water needs and optimising irrigation management. Accurate estimates of ET at field scale are therefore critical. The present paper investigates a remote sensing and modelling coupled approach for monitoring actual ET of irrigated wheat crops in the semi-arid region of Tensift Al Haouz (Morocco). The ET modelling is based on a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (r(c)) and a stress index (SI). SI is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The proposed model is first calibrated using eddy covariance measurements of ET during one growing season (2015-2016) over an experimental flood irrigated wheat field located within the irrigated perimeter named R3. It is then validated during the same growing season over another drip-irrigated wheat field located in the same perimeter. Next, the proposed ET model is implemented over a 10 x 10 km(2) area in R3 using a time series of Landsat-7/8 reflectance and LST data. The comparison between modelled and measured ET fluxes indicates that the model works well. The Root Mean Square Error (RMSE) values over drip and flood sites were 13 and 12 W m(-2), respectively. The proposed approach has a great potential for detecting crop water stress and estimating crop water requirements over large areas along the agricultural seaso

    Medium-Resolution Mapping of Evapotranspiration at the Catchment Scale Based on Thermal Infrared MODIS Data and ERA-Interim Reanalysis over North Africa

    No full text
    International audienceAccurate quantification of evapotranspiration (ET) at the watershed scale remains an important research challenge for managing water resources in arid and semiarid areas. In this study, daily latent heat flux (LE) maps at the kilometer scale were derived from the two-source energy budget (TSEB) model fed by the MODIS leaf area index (LAI), land surface temperature (LST) products, and meteorological data from ERA-Interim reanalysis from 2001 to 2015 on the Tensift catchment (center of Morocco). As a preliminary step, both ERA-Interim and predicted LE at the time of the satellite overpass are evaluated in comparison to a large database of in situ meteorological measurements and eddy covariance (EC) observations, respectively. ERA-Interim compared reasonably well to in situ measurements, but a positive bias on air temperature was highlighted because meteorological stations used for the evaluation were mainly installed on irrigated fields while the grid point of ERA-Interim is representative of larger areas including bare (and hot) soil. Likewise, the predicted LE was in good agreement with the EC measurements gathered on the main crops of the region during 15 agricultural seasons with a correlation coefficient r = 0.70 and a reasonable bias of 30 W/m2. After extrapolating the instantaneous LE estimates to ET daily values, monthly ET was then assessed in comparison to monthly irrigation water amounts provided by the local agricultural office added to CRU precipitation dataset with a reasonable agreement; the relative error was more than 89% but the correlation coefficient r reached 0.80. Seasonal and interannual evapotranspiration was analyzed in relation to local climate and land use. Lastly, the potential use for improving the early prediction of grain yield, as well as detecting newly irrigated areas for arboriculture, is also discussed. The proposed method provides a relatively simple way for obtaining spatially distributed daily estimates of ET at the watershed scale, especially for not ungauged catchments
    corecore