12 research outputs found

    CyanoFactory, a European consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels

    Get PDF
    CyanoFactory, Design, construction and demonstration of solar biofuel production using novel (photo)synthetic cell factories, was an R&D project developed in response to the European Commission FP7-ENERGY-2012-1 call “Future Emerging Technologies” and the need for significant advances in both new science and technologies to convert solar energy into a fuel. CyanoFactory was an example of “purpose driven” research and development with identified scientific goals and creation of new technologies. The present overview highlights significant outcomes of the project, three years after its successful completion. The scientific progress of CyanoFactory involved: (i) development of a ToolBox for cyanobacterial synthetic biology; (ii) construction of DataWarehouse/Bioinformatics web-based capacities and functions; (iii) improvement of chassis growth, functionality and robustness; (iv) introduction of custom designed genetic constructs into cyanobacteria, (v) improvement of photosynthetic efficiency towards hydrogen production; (vi) biosafety mechanisms; (vii) analyses of the designed cyanobacterial cells to identify bottlenecks with suggestions on further improvements; (viii) metabolic modelling of engineered cells; (ix) development of an efficient laboratory scale photobioreactor unit; and (x) the assembly and experimental performance assessment of a larger (1350 L) outdoor flat panel photobioreactor system during two seasons. CyanoFactory - Custom design and purpose construction of microbial cells for the production of desired products using synthetic biology – aimed to go beyond conventional paths to pursue innovative and high impact goals. CyanoFactory brought together ten leading European partners (universities, research organizations and enterprises) with a common goal – to develop the future technologies in Synthetic biology and Advanced photobioreactors

    The process of thermodialysis and the efficiency increase ofbioreactors operating under non-isothermal conditions

    No full text
    When a catalytic membrane is employed in a non-isothermal bioreactor its activity increases as a direct function of the applied temperature gradient and decreases when both average temperature or substrate concentration increase. To know the physical cause responsible for this behaviour, substrate fluxes have been studied under isothermal conditions diffusion and non-isothermal conditions thermodialysis . Strong analogies between the behaviour of the catalytic membrane and the substrate fluxes produced by the process of thermodialysis have been observed. By introducing diffusive and thermodiffusive substrate fluxes in appropriate mass balance equations the substrate concentration profiles into the catalytic membrane have been deduced by computer simulation. In absence of catalysis and under non-isothermal conditions the profiles are higher than the ones corresponding under comparable isothermal conditions, while the contrary occurs in the presence of catalysis. The percentage increases of enzyme activity, calculated by the curves of the substrate concentration profiles, show the same temperature and concentration dependence than those actually observed with the catalytic membrane. The role of thermodialysis in affecting the enzyme activity in non-isothermal bioreactor has been discussed and demonstrated
    corecore