2,567 research outputs found
Sales Channel Optimization via Simulations Based on Observational Data with Delayed Rewards: A Case Study at LinkedIn
Training models on data obtained from randomized experiments is ideal for
making good decisions. However, randomized experiments are often
time-consuming, expensive, risky, infeasible or unethical to perform, leaving
decision makers little choice but to rely on observational data collected under
historical policies when training models. This opens questions regarding not
only which decision-making policies would perform best in practice, but also
regarding the impact of different data collection protocols on the performance
of various policies trained on the data, or the robustness of policy
performance with respect to changes in problem characteristics such as action-
or reward- specific delays in observing outcomes. We aim to answer such
questions for the problem of optimizing sales channel allocations at LinkedIn,
where sales accounts (leads) need to be allocated to one of three channels,
with the goal of maximizing the number of successful conversions over a period
of time. A key problem feature constitutes the presence of stochastic delays in
observing allocation outcomes, whose distribution is both channel- and outcome-
dependent. We built a discrete-time simulation that can handle our problem
features and used it to evaluate: a) a historical rule-based policy; b) a
supervised machine learning policy (XGBoost); and c) multi-armed bandit (MAB)
policies, under different scenarios involving: i) data collection used for
training (observational vs randomized); ii) lead conversion scenarios; iii)
delay distributions. Our simulation results indicate that LinUCB, a simple MAB
policy, consistently outperforms the other policies, achieving a 18-47% lift
relative to a rule-based policyComment: Accepted at REVEAL'22 Workshop (16th ACM Conference on Recommender
Systems - RecSys 2022
Antibiotic Associated Diarrhea in Hospitalized Adult Patients
Background: Antibiotic associated diarrhea (AAD) occurs from the first initiation until 2 months of the end of antibiotic treatment. The aims of this study were to know the incidence of AAD, Clostridium difficile infection and other gastrointestinal symptoms in hospitalized adult patients.Method: The study is a cross sectional study. We studied the antibiotic associated diarrhea (AAD), Clostridium difficile infection and other gastrointestinal symptoms in patients who were admited in Cipto Mangunkusumo Hospital. Inclusion were male or female, age 18-75 years old, Patients started receiving antibiotics maximal 2 x 24 hours prior to hospitalization, gave written informed consent.Results: The incidence of AAD was 11.5%. The incidence of Clostridium difficile infection was 15.4%. The Upper gastrointestinal symptom was present on 20 (38.5%) patients. Lower abdominal symptom was present on 10 (19.2%) patients.Conclusion: The Incidence of AAD and Clostridium difficile infection were 11.5% and 15.4% respectively. The clinical manifestations of AAD were diarrhea, other upper and lower abdominal symptoms
MCT1 in Invasive Ductal Carcinoma: Monocarboxylate Metabolism and Aggressive Breast Cancer.
Introduction: Monocarboxylate transporter 1 (MCT1) is an importer of monocarboxylates such as lactate and pyruvate and a marker of mitochondrial metabolism. MCT1 is highly expressed in a subgroup of cancer cells to allow for catabolite uptake from the tumor microenvironment to support mitochondrial metabolism. We studied the protein expression of MCT1 in a broad group of breast invasive ductal carcinoma specimens to determine its association with breast cancer subtypes and outcomes. Methods: MCT1 expression was evaluated by immunohistochemistry on tissue micro-arrays (TMA) obtained through our tumor bank. Two hundred and fifty-seven cases were analyzed: 180 cases were estrogen receptor and/or progesterone receptor positive (ER+ and/or PR+), 62 cases were human epidermal growth factor receptor 2 positive (HER2+), and 56 cases were triple negative breast cancers (TNBC). MCT1 expression was quantified by digital pathology with Aperio software. The intensity of the staining was measured on a continuous scale (0-black to 255-bright white) using a co-localization algorithm. Statistical analysis was performed using a linear mixed model. Results: High MCT1 expression was more commonly found in TNBC compared to ER+ and/or PR+ and compared to HER-2+ (p \u3c 0.001). Tumors with an in-situ component were less likely to stain strongly for MCT1 (p \u3c 0.05). High nuclear grade was associated with higher MCT1 staining (p \u3c 0.01). Higher T stage tumors were noted to have a higher expression of MCT1 (p \u3c 0.05). High MCT1 staining in cancer cells was associated with shorter progression free survival, increased risk of recurrence, and larger size independent of TNBC status (p \u3c 0.05). Conclusion: MCT1 expression, which is a marker of high catabolite uptake and mitochondrial metabolism, is associated with recurrence in breast invasive ductal carcinoma. MCT1 expression as quantified with digital image analysis may be useful as a prognostic biomarker and to design clinical trials using MCT1 inhibitors
Hybrid hierarchical patterns of gold nanoparticles and poly(ethylene glycol) microstructures
Hybrid surface micro-patterns composed of topographic structures of polyethylene glycol (PEG)-hydrogels and hierarchical lines of gold nanoparticles (Au NPs) were fabricated on silicon wafers. Micro-sized lines of Au NPs were first obtained on the surface of a silicon wafer via “micro-contact deprinting”, a method recently developed by our group. Topographic micro-patterns of PEG, of both low and high aspect ratio (AR up to 6), were then aligned on the pre-patterned surface via a procedure adapted from the soft lithographic method MIMIC (Micro-Molding in Capillaries), which is denoted as “adhesive embossing”. The result is a complex surface pattern consisting of alternating flat Au NP lines and thick PEG bars. Such patterns provide novel model surfaces for elucidating the interplay between (bio)chemical and physical cues on cell behavior
Enhanced cytotoxicity of silver complexes bearing bidentate N-heterocyclic carbene ligands
A diverse library of cationic silver complexes bearing bis(N-heterocyclic carbene) ligands have been prepared which exhibit cytotoxicity comparable to cisplatin against the adenocarcinomas MCF7 and DLD1. Bidentate ligands show enhanced cytotoxicity over monodentate and macrocyclic ligands
Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides with experiment and theory
Chalcogen vacancies are considered to be the most abundant point defects in
two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and
predicted to result in deep in-gap states (IGS). As a result, important
features in the optical response of 2D-TMDs have typically been attributed to
chalcogen vacancies, with indirect support from Transmission Electron
Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM
imaging measurements do not provide direct access to the electronic structure
of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a
direct probe of local electronic structure, the interpretation of the chemical
nature of atomically-resolved STM images of point defects in 2D-TMDs can be
ambiguous. As a result, the assignment of point defects as vacancies or
substitutional atoms of different kinds in 2D-TMDs, and their influence on
their electronic properties, has been inconsistent and lacks consensus. Here,
we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS,
and state-of-the-art ab initio density functional theory (DFT) and GW
calculations to determine both the structure and electronic properties of the
most abundant individual chalcogen-site defects common to 2D-TMDs.
Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our
results and analysis strongly suggest that the common chalcogen defects in our
2D-TMDs, prepared and measured in standard environments, are substitutional
oxygen rather than vacancies
Electron Photodetachment from Aqueous Anions. II. Ionic Strength Effect on Geminate Recombination Dynamics and Quantum Yield for Hydrated Electron
In concentrated solutions of NaClO4 and Na2SO4, the quantum yield for free
electron generated by detachment from photoexcited anions (such as I-, OH-,
ClO^4-, and [SO3]^2-) linearly decreases by 6-12% per 1 M ionic strength. In 9
M sodium perchlorate solution, this quantum yield decreases by roughly an order
of magnitude. Ultrafast kinetic studies of 200 nm photon induced electron
detachment from Br-, HO- and [SO3]^2- suggest that the prompt yield of
thermalized electron does not change in these solutions; rather, the ionic
strength effect originates in more efficient recombination of geminate pairs.
Within the framework of the recently proposed mean force potential (MFP) model
of charge separation dynamics in such photosystems, the observed changes are
interpreted as an increase in the short-range attractive potential between the
geminate partners. Association of sodium cation(s) with the electron and the
parent anion is suggested as the most likely cause for the observed
modification of the MFP. Electron thermalization kinetics suggest that the
cation associated with the parent anion (by ion pairing and/or ionic atmosphere
interaction) is passed to the detached electron in the course of the
photoreaction. The precise atomic-level mechanism for the ionic strength effect
is presently unclear; any further advance is likely to require the development
of an adequate quantum molecular dynamics model.Comment: 40 pages, 10 figures + supplement 2 pages, 9 figures; will be
submitted, in a modified form, to J. Phys. Chem
Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina
3 pages, 3 figures.Bismuth telluride nanowires are of interest for thermoelectric applications because of the predicted enhancement in the thermoelectric figure-of-merit in nanowire structures. In this letter, we carried out temperature-dependent thermal diffusivity characterization of a 40 nm diameter Bi2Te3 nanowires/alumina nanocomposite. Measured thermal diffusivity of the composite decreases from 9.2×10–7 m2 s–1 at 150 K to 6.9×10–7 m2 s–1 at 300 K and is lower than thermal diffusivity of unfilled alumina templates. Effective medium calculations indicate that the thermal conductivity along nanowires axis is at least an order of magnitude lower than thermal conductivity of the bulk bismuth telluride.G.C. would like to acknowledge financial support from
JPL and DOE. M.S.M.G. acknowledges a fellowship
awarded by the MCYT (Spain) in the Ramon y Cajal Program.Peer reviewe
Childhood Physical Neglect Is Associated With Exaggerated Systemic and Intracellular Inflammatory Responses to Repeated Psychosocial Stress in Adulthood
Experiences of child maltreatment are associated with a host of adverse mental and physical health outcomes in adulthood. Altered reactivity to psychosocial stress exposure may partially explain known associations between early experiences of maltreatment and later life health. The present study focuses on examining whether experiences of child maltreatment are associated with physiological reactions to initial and repeated psychosocial stress in adulthood. To this end, 44 healthy adults (52% male, aged 18–65) completed the Childhood Trauma Questionnaire to provide information about exposure to child maltreatment and completed the Trier Social Stress Test (TSST) on 2 consecutive days. Peripheral blood was collected prior to as well as 30 and 120 min following the TSST on each day. Plasma Interleukin-6 (IL-6) and gene expression of IL-6, IL-1β, nuclear factor-kB (NF-kB), and inhibitor of kB (IkB) were measured from each blood sample. Total CTQ scores were unrelated to plasma IL-6 and gene expression (ps > .10) but a history of childhood physical neglect was associated with increased interleukin-1β (β =.35; p =.02; R2 =.19) and nuclear factor-kB (β =.30; p =.046; R2 =.13) expression following initial stress. Following repeated exposure to the TSST, childhood physical neglect was associated with increased plasma IL-6 reactivity (β =.34; p =.02; R2 =.16) and increased expression of nuclear factor-kB (β =.31; p =.04; R2 =.08). Finally, childhood physical neglect was associated with decreased habituation following repeated exposure to the TSST. Other CTQ subscales were not related to plasma IL-6 and gene expression when considered individually. Results from this study are suggestive of a unique effect of childhood physical neglect on the physiological stress response following initial and repeated exposure to a common psychosocial stressor. This provides important directions for future research because the effect of childhood physical neglect on long-term neglect are not well understood and in need of further investigation
Non-Gaussianities in N-flation
We compute non-Gaussianities in N-flation, a string motivated model of
assisted inflation with quadratic, separable potentials and masses given by the
Marcenko-Pastur distribution. After estimating parameters characterizing the
bi- and trispectrum in the horizon crossing approximation, we focus on the
non-linearity parameter , a measure of the bispectrum; we compute its
magnitude for narrow and broad spreads of masses, including the evolution of
modes after horizon crossing. We identify additional contributions due to said
evolution and show that they are suppressed as long as the fields are evolving
slowly. This renders -flation indistinguishable from simple
single-field models in this regime. Larger non-Gaussianities are expected to
arise for fields that start to evolve faster, and we suggest an analytic
technique to estimate their contribution. However, such fast roll during
inflation is not expected in N-flation, leaving (p)re-heating as the main
additional candidate for generating non-Gaussianities.Comment: 27 pages, 4 figures, extended references to match version accepted in
JCA
- …