159 research outputs found

    Validation of Regional CO2 Concentrations in the ECMWF Real-Time Analysis and Carbon-Tracker Reanalysis with Airborne Observations from ACT-A Field Campaign

    Get PDF
    Through verifying against hundreds of hours of airborne in-situ measurements from the NASA-sponsored Atmospheric Carbon and Transport America (ACT-A) field campaign, this study systematically examines the regional uncertainties and biases of the carbon dioxide (CO2) concentrations from two of the state-of-the-art global analysis products, namely the real-time analysis from the European Center (EC) for Medium Range Forecasting and NOAAs near real-time Carbon Tracker (CT) reanalysis. It is found that both the EC and CT-NRT analyses agree reasonably well with the independent ACT-A flight-level CO2 measurements in the free troposphere but the uncertainties are considerably larger in the boundary layer during both the summer months of 2016 and the winter months of 2017. There are also strong variabilities in accuracy and bias between seasons, and across three different subregions in the United States (Mid-Atlantic, Midwest and South). Overall, the analysis uncertainties of the EC and CT-NRT analyses in terms of root-mean square deviations against airborne data are comparable to each other, both of which are between 1-2 ppm in the free troposphere but can be as large as 10 ppm near the surface, which are grossly consistent with the difference between the two analyses. The current study not only provides systematic uncertainty estimates for both analysis products over North America but also demonstrated that these two independent estimates can be used to approximate the overall regional CO2 analysis uncertainties. Both statistics are important in future studies in quantifying the uncertainties of regional carbon concentration and flux estimates, as well as in assessing the impact of regional transport through more refined regional modeling and analysis systems

    Anthropogenic Control over Wintertime Oxidation of Atmospheric Pollutants

    Get PDF
    Anthropogenic air pollutants such as nitrogen oxides (NO(x) = NO + NO(2)), sulfur dioxide (SO(2)), and volatile organic compounds (VOC), among others, are emitted to the atmosphere throughout the year from energy production and use, transportation, and agriculture. These primary pollutants lead to the formation of secondary pollutants such as fine particulate matter (PM(2.5)) and ozone (O(3)) and perturbations to the abundance and lifetimes of short-lived greenhouse gases. Free radical oxidation reactions driven by solar radiation govern the atmospheric lifetimes and transformations of most primary pollutants and thus their spatial distributions. During winter in the mid and high latitudes, where a large fraction of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly slower. Using observations from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase NO(x) reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities, lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted winter air, and thus, the distribution and fate of primary pollutants on a regional to global scale

    Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis

    Full text link
    Background Endocrine-disrupting chemicals (EDCs) contribute to disease and dysfunction and incur high associated costs (>1% of the gross domestic product [GDP] in the European Union). Exposure to EDCs varies widely between the USA and Europe because of differences in regulations and, therefore, we aimed to quantify disease burdens and related economic costs to allow comparison. Methods We used existing models for assessing epidemiological and toxicological studies to reach consensus on probabilities of causation for 15 exposure–response relations between substances and disorders. We used Monte Carlo methods to produce realistic probability ranges for costs across the exposure–response relation, taking into account uncertainties. Estimates were made based on population and costs in the USA in 2010. Costs for the European Union were converted to US(1= (€1=1·33). Findings The disease costs of EDCs were much higher in the USA than in Europe (340billion[233340 billion [2·33% of GDP] vs 217 billion [1·28%]). The difference was driven mainly by intelligence quotient (IQ) points loss and intellectual disability due to polybrominated diphenyl ethers (11 million IQ points lost and 43 000 cases costing 266billionintheUSAvs873000IQpointslostand3290casescosting266 billion in the USA vs 873 000 IQ points lost and 3290 cases costing 12·6 billion in the European Union). Accounting for probability of causation, in the European Union, organophosphate pesticides were the largest contributor to costs associated with EDC exposure (121billion),whereasintheUSAcostsduetopesticidesweremuchlower(121 billion), whereas in the USA costs due to pesticides were much lower (42 billion). Interpretation EDC exposure in the USA contributes to disease and dysfunction, with annual costs taking up more than 2% of the GDP. Differences from the European Union suggest the need for improved screening for chemical disruption to endocrine systems and proactive prevention. Funding Endocrine Society, Ralph S French Charitable Foundation, and Broad Reach Foundation. © 2016 Elsevier Lt

    The distribution of sea-salt aerosol in the global troposphere

    Get PDF
    We present the first data on the concentration of sea-salt aerosol throughout most of the depth of the troposphere and over a wide range of latitudes, which were obtained during the Atmospheric Tomography (ATom) mission. Sea-salt concentrations in the upper troposphere are very small, usually less than 10 ng per standard m3 (about 10 parts per trillion by mass) and often less than 1 ng m−3. This puts stringent limits on the contribution of sea-salt aerosol to halogen and nitric acid chemistry in the upper troposphere. Within broad regions the concentration of sea-salt aerosol is roughly proportional to water vapor, supporting a dominant role for wet scavenging in removing sea-salt aerosol from the atmosphere. Concentrations of sea-salt aerosol in the winter upper troposphere are not as low as in the summer and the tropics. This is mostly a consequence of less wet scavenging in the drier, colder winter atmosphere. There is also a source of sea-salt aerosol over pack ice that is distinct from that over open water. With a well-studied and widely distributed source, sea-salt aerosol provides an excellent test of wet scavenging and vertical transport of aerosols in chemical transport models

    Cropland Carbon Uptake Delayed and Reduced by 2019 Midwest Floods

    Get PDF
    While large‐scale floods directly impact human lives and infrastructures, they also profoundly impact agricultural productivity. New satellite observations of vegetation activity and atmospheric CO₂ offer the opportunity to quantify the effects of such extreme events on cropland carbon sequestration. Widespread flooding during spring and early summer 2019 induced conditions that delayed crop planting across the U.S. Midwest. As a result, satellite observations of solar‐induced chlorophyll fluorescence from TROPOspheric Monitoring Instrument and Orbiting Carbon Observatory reveal a 16‐day shift in the seasonal cycle of photosynthesis relative to 2018, along with a 15% lower peak value. We estimate a reduction of 0.21 PgC in cropland gross primary productivity in June and July, partially compensated in August and September (+0.14 PgC). The extension of the 2019 growing season into late September is likely to have benefited from increased water availability and late‐season temperature. Ultimately, this change is predicted to reduce the crop productivity in the Midwest Corn/Soy belt by ~15% compared to 2018. Using an atmospheric transport model, we show that a decline of ~0.1 PgC in the net carbon uptake during June and July is consistent with observed CO₂ enhancements of up to 10 ppm in the midday boundary layer from Atmospheric Carbon and Transport‐America aircraft and over 3 ppm in column‐averaged dry‐air mole fractions from Orbiting Carbon Observatory. This study quantifies the impact of floods on cropland productivity and demonstrates the potential of combining solar‐induced chlorophyll fluorescence with atmospheric CO₂ observations to monitor regional carbon flux anomalies
    corecore