50 research outputs found

    Fatal Cases of Influenza A(H3N2) in Children: Insights from Whole Genome Sequence Analysis

    Get PDF
    During the Northern Hemisphere winter of 2003–2004 the emergence of a novel influenza antigenic variant, A/Fujian/411/2002-like(H3N2), was associated with an unusually high number of fatalities in children. Seventeen fatal cases in the UK were laboratory confirmed for Fujian/411-like viruses. To look for phylogenetic patterns and genetic markers that might be associated with increased virulence, sequencing and phylogenetic analysis of the whole genomes of 63 viruses isolated from fatal cases and non fatal “control” cases was undertaken. The analysis revealed the circulation of two main genetic groups, I and II, both of which contained viruses from fatal cases. No associated amino acid substitutions could be linked with an exclusive or higher occurrence in fatal cases. The Fujian/411-like viruses in genetic groups I and II completely displaced other A(H3N2) viruses, but they disappeared after 2004. This study shows that two A(H3N2) virus genotypes circulated exclusively during the winter of 2003–2004 in the UK and caused an unusually high number of deaths in children. Host factors related to immune state and differences in genetic background between patients may also play important roles in determining the outcome of an influenza infection

    Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition

    Get PDF
    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell–mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR–HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes

    Evidence of HIV-1 adaptation to host HLA alleles following chimp-to-human transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytotoxic T-lymphocyte immune response is important in controlling HIV-1 replication in infected humans. In this immune pathway, viral peptides within infected cells are presented to T-lymphocytes by the polymorphic human leukocyte antigens (HLA). HLA alleles exert selective pressure on the peptide regions and immune escape mutations that occur at some of the targeted sites can enable the virus to adapt to the infected host. The pattern of ongoing immune escape and reversion associated with several human HLA alleles has been studied extensively. Such mutations revert upon transmission to a host without the HLA allele because the escape mutation incurs a fitness cost. However, to-date there has been little attempt to study permanent loss of CTL epitopes due to escape mutations without an effect on fitness.</p> <p>Results</p> <p>Here, we set out to determine the extent of adaptation of HIV-1 to three well-characterized HLA alleles during the initial exposure of the virus to the human cytotoxic immune responses following transmission from chimpanzee. We generated a chimpanzee consensus sequence to approximate the virus sequence that was initially transmitted to the human host and used a method based on peptide binding affinity to HLA crystal structures to predict peptides that were potentially targeted by the HLA alleles on this sequence. Next, we used codon-based phylogenetic models to quantify the average selective pressure that acted on these regions during the period immediately following the zoonosis event, corresponding to the branch of the phylogenetic tree leading to the common ancestor of all of the HIV-1 sequences. Evidence for adaptive evolution during this period was observed at regions recognised by HLA A*6801 and A*0201, both of which are common in African populations. No evidence of adaptive evolution was observed at sites targeted by HLA-B*2705, which is a rare allele in African populations.</p> <p>Conclusion</p> <p>Our results suggest that the ancestral HIV-1 virus experienced a period of positive selective pressure due to immune responses associated with HLA alleles that were common in the infected human population. We propose that this resulted in permanent escape from immune responses targeting unconstrained regions of the virus.</p

    A Human Minor Histocompatibility Antigen Specific for B Cell Acute Lymphoblastic Leukemia

    Get PDF
    Human minor histocompatibility antigens (mHags) play an important role in the induction of cytotoxic T lymphocyte (CTL) reactivity against leukemia after human histocompatibility leukocyte antigen (HLA)-identical allogeneic bone marrow transplantation (BMT). As most mHags are not leukemia specific but are also expressed by normal tissues, antileukemia reactivity is often associated with life-threatening graft-versus-host disease (GVHD). Here, we describe a novel mHag, HB-1, that elicits donor-derived CTL reactivity in a B cell acute lymphoblastic leukemia (B-ALL) patient treated by HLA-matched BMT. We identified the gene encoding the antigenic peptide recognized by HB-1–specific CTLs. Interestingly, expression of the HB-1 gene was only observed in B-ALL cells and Epstein-Barr virus–transformed B cells. The HB-1 gene–encoded peptide EEKRGSLHVW is recognized by the CTL in association with HLA-B44. Further analysis reveals that a polymorphism in the HB-1 gene generates a single amino acid exchange from His to Tyr at position 8 within this peptide. This amino acid substitution is critical for recognition by HB-1–specific CTLs. The restricted expression of the polymorphic HB-1 Ag by B-ALL cells and the ability to generate HB-1–specific CTLs in vitro using peptide-loaded dendritic cells offer novel opportunities to specifically target the immune system against B-ALL without the risk of evoking GVHD
    corecore