22 research outputs found

    Photoredox Organocatalysis for the Enantioselective Synthesis of 1,7-Dicarbonyl Compounds

    Get PDF
    We describe an asymmetric organocatalytic method to synthesize 1,7-dicarbonyl compounds containing a β-stereocenter. The chemistry relies on the formation of γ-keto radicals, generated upon oxidative ring opening of cyclobutanols mastered by an organic photoredox catalyst. These nonstabilized primary radicals are stereoselectively intercepted by an iminium ion intermediate, formed upon activation of aliphatic and aromatic enals by a chiral secondary amine catalyst. This organocatalytic photoredox method served to prepare scaffolds found in natural products and drug molecules

    Photochemical Chemoselective Alkylation of Tryptophan-Containing Peptides

    Get PDF
    We report a photochemical method for the chemoselective radical functionalization of tryptophan (Trp)-containing peptides. The method exploits the photoactivity of an electron donor-acceptor complex generated between the tryptophan unit and pyridinium salts. Irradiation with weak light (390 nm) generates radical intermediates right next to the targeted Trp amino acid, facilitating a proximity-driven radical functionalization. This protocol exhibits high chemoselectivity for Trp residues over other amino acids and tolerates biocompatible conditions

    SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner

    Get PDF
    The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we identified five acetylated residues in FOXA2. Sirtuin family member SIRT1 was found to interact with and deacetylate FOXA2, the latter process being dependent on the NAD +-binding catalytic site of SIRT1. Deacetylation by SIRT1 reduced protein stability of FOXA2 by targeting it towards proteasomal degradation, and inhibited transcription from the FOXA2-driven G6pase and CPT1a promoters. While mutation of the five identified acetylated residues weakly affected protein acetylation and stability, mutation of at least seven additional lysine residues was required to abolish acetylation and reduce protein levels of FOXA2. The importance of acetylation of FOXA2 became apparent upon changes in nutrient levels. The interaction of FOXA2 and SIRT1 was strongly reduced upon nutrient withdrawal in cell culture, while enhanced Foxa2 acetylation levels were observed in murine liver in vivo after starvation for 36 hours. Collectively, this study demonstrates that SIRT1 controls the acetylation level of FOXA2 in a nutrient-dependent manner and in times of nutrient shortage the interaction between SIRT1 and FOXA2 is reduced. As a result, FOXA2 is protected from degradation by enhanced acetylation, hence enabling the FOXA2 transcriptional program to be executed to maintain metabolic homeostasis

    Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor.

    Get PDF
    Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control

    The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms

    Get PDF
    : The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade

    Selenite transiently represses transcription of photosynthesis-related genes in potato leaves

    No full text
    A striking response of potato leaves to aspersion with selenite was observed at the transcriptional level by means of cDNA microarrays analysis. This response is characterized by a general transient repression of genes coding for components of photosynthetic systems and of other light-regulated genes. In particular, maximal repression was observed 8 hours after selenite aspersion, while 24 hours after the treatment a complete recovery of normal transcriptional levels was detected. Another general feature of the transcriptional response to selenite is represented by the transcriptional induction of genes related to amino acid metabolism, and to stress defense; interestingly, two genes coding for glutathione S-transferases were found early-induced upon selenite treatment

    Molecular Characterization of Pancreatic Ductal Adenocarcinoma Using a Next-Generation Sequencing Custom-Designed Multigene Panel

    Get PDF
    Despite the efforts made in the management of PDAC, the 5-year relative survival rate of pancreatic ductal adenocarcinoma (PDAC) still remains very low (10%). To date, precision oncology is far from being ready to be applied in cases of PDAC, although studies exploring the molecular and genetic alterations have been conducted, and the genomic landscape of PDAC has been characterized. This study aimed to apply a next-generation sequencing (NGS) laboratory-developed multigene panel to PDAC samples to find molecular alterations that could be associated with histopathological features and clinical outcomes. A total of 68 PDACs were characterized by using a laboratory-developed multigene NGS panel. KRAS and TP53 mutations were the more frequent alterations in 75.0% and 44.6% of cases, respectively. In the majority (58.7%) of specimens, more than one mutation was detected, mainly in KRAS and TP53 genes. KRAS mutation was significantly associated with a shorter time in tumor recurrence compared with KRAS wild-type tumors. Intriguingly, KRAS wild-type cases had a better short-term prognosis despite the lymph node status. In conclusion, our work highlights that the combination of KRAS mutation with the age of the patient and the lymph node status may help in predicting the outcome in PDAC patients

    Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing

    Full text link
    Cost-effective SU-8 micro-structures on a silicon substrate were developed using 248 nm excimer laser KrF projection, studying the influence of the different variables on the final pattern geometry, finding out that the most critical are exposure dose and post-bake condition. Also a novel and cost effective type of photomask based on commercial polyimide Kapton produced by 355 nm DPSS laser microprocessing was developed, studying the influence of the cutting conditions on the photomask. Finally, as a likely application the biosensing capability with a standard BSA/antiBSA immunoassay over a 10 × 10 micro-plates square lattice of around 10 ¿m in diameter, 15 ¿m of spacing and 400 nm in height was demonstrated, finding a limit of detection (LOD) of 33.4 ng/ml which is in the order of magnitude of bioapplications such as detection of cortisol hormone or insulin-like growth factor. Low cost fabrication and vertical interrogation characterization techniques lead to a promising future in the biosensing technology field. © 2010 Elsevier B.V. All rights reserved.Funding for the study was provided by the Spanish Ministry of Science and Innovation under BIOPSIA project no. TEC2008-06574-C03.Sanza, FJ.; Laguna, MF.; Casquel Del Campo, R.; Holgado, M.; Angulo Barrios, C.; Ortega Higueruelo, FJ.; López-Romero, D.... (2011). Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing. Applied Surface Science. 257(12):5403-5407. https://doi.org/10.1016/j.apsusc.2010.10.010S540354072571
    corecore