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Abstract

The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during
fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied
whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we
identified five acetylated residues in FOXA2. Sirtuin family member SIRT1 was found to interact with and deacetylate FOXA2,
the latter process being dependent on the NAD+-binding catalytic site of SIRT1. Deacetylation by SIRT1 reduced protein
stability of FOXA2 by targeting it towards proteasomal degradation, and inhibited transcription from the FOXA2-driven
G6pase and CPT1a promoters. While mutation of the five identified acetylated residues weakly affected protein acetylation
and stability, mutation of at least seven additional lysine residues was required to abolish acetylation and reduce protein
levels of FOXA2. The importance of acetylation of FOXA2 became apparent upon changes in nutrient levels. The interaction
of FOXA2 and SIRT1 was strongly reduced upon nutrient withdrawal in cell culture, while enhanced Foxa2 acetylation levels
were observed in murine liver in vivo after starvation for 36 hours. Collectively, this study demonstrates that SIRT1 controls
the acetylation level of FOXA2 in a nutrient-dependent manner and in times of nutrient shortage the interaction between
SIRT1 and FOXA2 is reduced. As a result, FOXA2 is protected from degradation by enhanced acetylation, hence enabling the
FOXA2 transcriptional program to be executed to maintain metabolic homeostasis.
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Introduction

The mammalian Forkhead transcription factor FOXA2 is a key

regulator of hepatic energy metabolism in mammals [1]. Besides

its role in regulating liver and other endoderm-derived organ

specification during embryonic development [2], in post-natal life

Foxa2 controls essential metabolic processes including glucose

metabolism [3,4], bile acid homeostasis [5] and lipid oxidation

[6,7]. Hepatocyte-specific Foxa2 conditional knockout mice

showed impaired glucose homeostasis during the fasting response

[3] and Foxa2 heterozygous mice displayed increased adiposity

and impaired glucose uptake when challenged with a high fat diet

[6,8]. In C. elegans and D. melanogaster, orthologues of FOXA are

involved in gut development, illustrating the importance of these

proteins for organ specification throughout metazoan evolution

[9,10]. Interestingly, the nematode FOXA orthologue PHA-4 was

found to control dietary restriction (DR)-mediated lifespan

extension in C. elegans [11], suggesting a conserved role for FOXA

transcription factors in energy homeostasis and metabolism,

although the evidence for the involvement of mammalian FOXA2

in DR-mediated lifespan extension is still absent.

Metabolic processes controlled by Foxa2, such as glucose and

lipid homeostasis, are often deregulated in metabolic syndromes

such as diabetes and obesity [12,13]. Therefore, it is of great

importance to investigate and understand how changes at a

metabolic level functionally affect FOXA2-mediated transcrip-

tional regulation of metabolism. Recent reports identified several

post-translational modifications which are important in regulating

Foxa2 metabolic function and cellular localization. Insulin-

activated AKT2/PKB phosphorylates Foxa2 on a specific

threonine (T156) adjacent to the DNA binding domain, resulting

in nuclear exclusion and subsequent reduced transcriptional

output by Foxa2 [13,14], although these findings remain

controversial [3,15]. IKKa kinase, a downstream target of the

pro-inflammatory cytokine TNFa, was also reported to suppress

the FOXA2 transcriptional program by phosphorylating two

serines (Ser107/111) adjacent to the DNA binding Forkhead

domain [16].

Acetylation was recently proposed as a key post-translational

mechanism by which transcription factors involved in metabolism

are controlled in a nutrient-dependent manner [17,18]. Acetyla-

tion could therefore be a critical post-translational modification to

regulate metabolic activity of FOXA transcription factor family
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members. Indeed, FOXA transcription factors were found to

synergize with acetyltransferase p300 towards gene activation

[19,20]. Moreover, FOXA1 was shown to be acetylated by p300

[21]. In contrast to acetyltransferases which add acetylation

moieties to proteins, protein deacetylation is carried out by several

deacetylases. These are grouped to either class I and II histone

deacetylases (HDACs) or class III NAD+-dependent deacetylases,

or sirtuins, which are activated upon changes in energy levels as

manifested by an increase in the cellular NAD+/NADH ratio.

Among the sirtuin family members, SIRT1 has the broadest range

of substrates and affects the largest number of physiological

pathways, including glucose and lipid metabolism [22,23].

Because of its NAD+ dependency [24], SIRT1 connects the

energy demands of a cell to its metabolic regulation via

deacetylation of metabolic transcription factors and co-activators.

Therefore, sirtuins may be involved in energy-dependent regula-

tion of FOXA transcription factors by controlling their level of

acetylation.

Since FOXA2 functions as a metabolic gauge, we hypothesized

that FOXA2 could be regulated in a nutrient-dependent manner

by means of acetylation. By using LC-MS/MS, we identified

several acetylation sites on FOXA2 which are located adjacent to

the DNA binding domain of the protein. Acetylation of FOXA2

was dependent on SIRT1 which was found to interact with and

deacetylate FOXA2. Interestingly, the acetylation level of FOXA2

and the interaction of FOXA2 with SIRT1 were nutrient-

dependent. Moreover, acetylation protected FOXA2 from pro-

teasomal degradation to sustain transcriptional activity of FOXA2

on its target genes. Taken together our data point to a model in

which FOXA2 stability is regulated by SIRT1-mediated deacety-

lation in a nutrient-dependent manner towards the maintenance of

whole-body metabolic homeostasis.

Materials and Methods

Cell culture and transfection
All cell lines were obtained from ATCC. Human embryonic

kidney 293T cells (HEK293T cells) were maintained in DMEM

containing 1 g/L glucose (Glutamax, Gibco) supplemented with

10% FCS and antibiotics. Human bone osteosarcoma epithelial

cells (U2OS) and the human hepatoma HepG2 cell line were

maintained in DMEM containing 4.5 g/L glucose (Glutamax,

Gibco) supplemented with 10% FCS and antibiotics. In experi-

ments in which cells were starved, cells were washed thrice with

PBS prior to culture in glucose-free medium (Gibco) without FCS.

All cell lines were cultured in a humidified atmosphere containing

5% CO2 at 37uC. Transient transfection of HEK293T cells was

performed with FuGene 6 (Roche, Basel, Switzerland) according

to manufacturer’s instructions, while HepG2 cells and U2OS cells

were transiently transfected with polyethylenimine (PEI) (Poly-

sciences) at a ratio of 1 mg DNA to 4 ml PEI. Transfection of

siRNA was performed with Oligofectamine (Invitrogen) according

to manufacturer’s instructions.

Constructs
Wild type pcDNA3-FLAG-FOXA2 was synthesized by Gen-

Script (Piscataway, NJ, USA). pRSV-MYC-SIRT1 and pRSV-

MYC-SIRT1 H363Y were kind gifts from Prof. P. Coffer. pGL3-

G6pase-Luc (G6pase promoter [21227 to +57]) was a kind gift

from Dr. D. Schmoll [25] and pGL3-CPT1a-Luc (Cpt1a promoter

[22432 to +1]) was a kind gift from Prof. M. Negishi [26].

Mutation of multiple acetylation sites to generate the 12K-R

FLAG-FOXA2 mutant was performed by mutating (from lysine

(K) to arginine (R)) the wild type pcDNA3-FLAG-FOXA2

construct by site-directed mutagenesis (SDM) for the following

residues: K6, K259, K264, K274, K275 (identified by our LC/

MS-MS analysis) and K149, K226, K229, K253, K256, K365,

K399 (putative acetylation sites).

Luciferase assay and siRNA
To assess FOXA2-mediated transcriptional activity on either

the glucose-6-phosphatase (G6pase) or carnitine palmitoyltransfer-

ase 1a (CPT1a) promoter, pcDNA3-FLAG-FOXA2, pTK-Renilla

and pGL3-G6pase-Luc or pGL3-CPT1a-Luc (and pRSV-MYC-

SIRT1 when indicated) were transfected in HEK293T cells and

after 48 hours samples were assayed for luciferase activity. To

study the effect of knockdown of endogenous SIRT1 expression on

FOXA2 transcriptional activity in HEK293T cells, two rounds of

SIRT1 knockdown (8-hour interval) were performed with

Oligofectamine (Invitrogen) according to manufacturer’s instruc-

tions, followed by transfection of pcDNA3-FLAG-FOXA2, pGL3-

G6pase-Luc and pTK-Renilla after 16 hours. Forty-eight hours

after this final transfection, samples were assayed for luciferase

activity. Knockdown of SIRT1 was performed using ON-

TARGETplus SIRT1 siRNA SMARTpool, while ON-TARGET-

plus control siRNA SMARTpool (Thermo Scientific, Lafayette,

CO, USA) was used as a siRNA transfection control. Luciferase

assays were performed with the Dual-Luciferase Reporter Assay

System according to manufacturer’s instructions (Promega). pTK-

Renilla was used for normalization of promoter-driven luciferase

expression.

Antibodies and reagents
The following antibodies were used for confocal imaging:

mouse-anti-FLAG (M2, F1804) (Sigma), rabbit-anti-SIRT1 (D739,

#2493) (Cell Signaling), goat-anti-FOXA2 (M-20, sc-6554) (Santa

Cruz Biotechnology). For Western Blot analyses the following

antibodies were used: rabbit-anti-beta-actin (ab8224) (Abcam),

mouse-anti-FLAG (M2, F1804) (Sigma), mouse-anti-MYC (9E10,

ab32) and rabbit-anti-acetyl-lysine-HRP (ab23364) (Abcam),

rabbit-anti-FOXA2 (WRAB-1200) (Seven Hills Bioreagents),

rabbit-anti-SIRT1 (D739, #2493) (Cell Signaling), anti-ubiqui-

tin-HRP (BML-PW0150) (Enzo Lifesciences). Nicotinamide

(NAM), Trichostatin A (TSA), cycloheximide and MG132 were

purchased from Sigma. Concentration and duration of exposure of

cells to each of these reagents is indicated for each experiment.

Immunoprecipitation and Western Blot analyses
To assess the acetylation status of FOXA2, wild type pcDNA3-

FLAG-FOXA2 was ectopically expressed in HEK293T cells. After

48 hours, cells were lysed in RIPA buffer containing 1% Triton X-

100, 0.5% sodium deoxycholate, 20 mM Tris-HCl pH8.0,

167 mM NaCl, 10 mM EDTA, 0.1% SDS and Complete

protease inhibitors (Sigma). FLAG-FOXA2 was immunoprecipi-

tated using FLAG-M2 agarose beads (Sigma) at 4uC for 2 hours.

Beads were subsequently washed three times in RIPA buffer. To

minimize co-elution of the heavy and light chains of the anti-

FLAG antibodies, the beads were resuspended in non-reducing

sample buffer (containing: 125 mM Tris-HCl pH6.8, 4% SDS,

20% glycerol and 0.004% bromophenol blue) and heated at 95uC
for 5 minutes. Subsequently, the supernatant containing dissoci-

ated and immunoprecipitated FLAG-FOXA2 was transferred to a

new vial and the proteins were reduced by adding DTT to a final

concentration of 50 mM. Immunoprecipitated proteins were

analyzed by sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) followed by Western Blot analyses. Protein

acetylation was detected using an anti-acetyl-lysine-HRP antibody

(ab23364) (Abcam). Subsequently, immunoprecipitated levels of
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FOXA2 were assessed by anti-FLAG antibodies (M2, F1804)

(Sigma).

To assess the protein-protein interaction by co-immunoprecip-

itation, FLAG-FOXA2 and wild type or H363Y mutant MYC-

SIRT1 were ectopically expressed in HEK293T cells. After

48 hours, cells were lysed in SIRT buffer, containing 1% Triton

X-100, 5% glycerol, 50 mM Tris-HCl pH7.5, 100 mM NaCl,

5 mM EDTA and Complete protease inhibitors (Roche, Basel,

Switzerland). FLAG-FOXA2 was immunoprecipitated using

FLAG-M2 beads (Sigma) for 2 hours. Beads were subsequently

washed three times in SIRT buffer and immunoprecipitated

proteins were analyzed by SDS-PAGE after reduction in sample

buffer, followed by Western Blot analyses. Presence of SIRT1 was

detected by anti-MYC (9E10, ab32) (Abcam) or anti-SIRT1

(D739, #2493) (Cell Signaling) antibodies while FOXA2 was

detected by anti-FLAG antibodies (M2, F1804) (Sigma).

Quantitative RT-PCR
To assess the effect of NAM treatment on the levels of FOXA2

mRNA, HEK293T cells transfected with wild type pcDNA3-

FLAG-FOXA2, were cultured for 16 hours with 20 mM NAM of

vehicle control and relative FOXA2 mRNA levels were determined

by quantitative RT-PCR. RNA was isolated from the cells using a

Machery-Nagel NucleoSpin RNA II kit (Bioké, Leiden, The

Netherlands) and quantified using a Nanodrop ND-1000 (Wil-

mington, DE, USA). cDNA was prepared from total RNA using

an iScript cDNA Synthesis Kit from Bio-Rad (Bio-Rad Labora-

tories, Stanford, CA, USA) and gene expression assays were

performed according to manufacturer’s protocol (SYBR Select

Master Mix; Life Technologies Bleiswijk, The Netherlands) to

measure mRNA levels of FOXA2 as the gene of interest, and 18 S

as the housekeeping gene using the following primers: FOXA2-

forward 59-TGGAGCAGCTACTATGCAG-39, FOXA2-reverse

59-CGTGTTCATGCCGTTCATC-39; 18 S-forward 59-AGTC-

CCTGCCCTTTGTACACA-39 and 18 S-reverse 59-CGATCC-

GAGGGCCTCACTA-39.

Mass spectrometry
Wild type FLAG-FOXA2 was ectopically expressed in

HEK293T cells. When indicated, cells were cultured for 16 hours

prior to cell lysis in 20 mM NAM and 5 mM TSA to inhibit

endogenous deacetylase activity. Cells were lysed in RIPA buffer,

immunoprecipitated with FLAG-M2 agarose beads and reduced

in sample buffer, as described above. Subsequently, immunopre-

cipitated wild type FLAG-FOXA2 was run on NuPAGE Bis-Tris

Mini Gels (Invitrogen, Carlsbad, USA) according to manufactur-

er’s instructions. Bands were excised from the gel, reduced with

DTT (0.5 mM; MP Biomedicals), alkylated with iodoacetamide

(54 mM; Sigma), and digested with trypsin (Roche), chymotrypsin

(Roche) or V8-DE (Roche) as described [27]. A second round of

digestion was performed on the gel fragments with elastase (Sigma)

to improve protein coverage by MS. Samples were subjected to

nanoflow LC (Eksigent) using C18 reverse phase trap columns

(Synergi 4 mm Hydro-RP 80 Å, Phenomenex; column dimensions

2 cm6100 mm, packed in-house) and subsequently separated on

C18 analytical columns (ReproSil-Pur 120 C18-AQ, 5 mm, Dr.

Maisch GmbH; column dimensions, 20 cm650 mm; packed in-

house) using a linear gradient from 0 to 40% buffer B (buffer

A = 5% (v/v) acetonitrile, 0.1% formic acid (v/v); buffer B = 95%

(v/v) acetonitrile, 0.1% formic acid (v/v)) in 60 min at a constant

flow rate of 150 nl/min. Column eluate was directly coupled to a

LTQ-Orbitrap-XL mass spectrometer (Thermo Scientific) oper-

ating in positive mode, using lock spray internal calibration. Data

were processed and subjected to database searches using Proteome

Discoverer software (Thermo Scientific) or Mascot software

(Matrix Science) against non-redundant SwissProt and NCBI

database, with a 10 ppm mass tolerance of precursor and 0.5 Da

for the fragment ion.

Localization studies
HepG2 cells were grown on Poly-L-Lysine (Sigma) coated

microscope slides, fixed in PBS containing 4% paraformaldehyde

(Merck, Nottingham, United Kingdom), and permeabilized in

PBS containing 0.25% Triton X-100 (Sigma). Cells were stained

with indicated SIRT1 (D739, #2493) (Cell Signaling) and

FOXA2-specific antibodies (M-20, sc-6554) (Santa Cruz Biotech-

nology) in PBS containing 0.05% Tween, 1% BSA (Sigma) and

10% normal donkey serum (Jackson Immunoresearch). Subse-

quently, cells were extensively washed in PBS containing 0.05%

Tween and mounted in Mowiol 4-88 (Sanofi-Aventis) containing

DAPI. Cells were analyzed with a 636 objective on a Zeiss LSM

710 confocal microscope (Oberkochen, Germany).

Proximity Ligation Assay [28]
Cells were grown (and transfected in the case of U2OS cells) as

indicated on Poly-L-Lysine-coated microscope slides (Sigma). Cells

were fixed in PBS containing 4% Paraformaldehyde (Merck,

Nottingham, United Kingdom) for 15 minutes and permeabilized

with PBS containing 0.25% Triton X-100 (Sigma) for 10 minutes.

Slides were blocked in PBS containing 0.05% Tween and 10%

normal donkey serum (Jackson Immunoresearch), and incubated

with indicated antibodies against SIRT1 (D739, #2493) (Cell

Signaling) and FLAG (M2, F1804) (Sigma), (in transfected U2OS

cells), or SIRT1 (D739, #2493) (Cell Signaling) and FOXA2 (M-

20, sc-6554) (Santa Cruz Biotechnology) (in HepG2 cells). Cells

were subsequently incubated with Duolink II PLA probes (Olink

Biosciences) and stained according to manufacturer’s protocol.

Cells were analyzed with a 636 objective on a Zeiss LSM 710

confocal microscope (Oberkochen, Germany). In experiments in

which HepG2 cells were starved, cells were washed thrice with

PBS. Subsequently, cells were cultured for 2 or 4 hours in glucose-

free medium (Gibco) without FCS prior to fixation.

Murine livers and endogenous Foxa2
immunoprecipitation

Wild type Balb/c mice were either fed ad libitum or were

restricted from food intake by limiting the chow to 25% of ad

libitum levels for 36 hours. Mice were sacrificed, and livers were

extracted and stored at 280uC. Whole cell lysates of these livers

were generated by homogenizing 50 mg of each liver in RIPA

buffer with 0.5 mm Zirconium Oxide beads by Bullet Blender

(Next Advance, USA). Immunoprecipitation of Foxa2 from the

supernatant of these homogenates was performed by rabbit-anti-

FOXA2 antibody (WRAB-1200) (Seven Hill Bioreagents), pre-

coupled to protein G sepharose beads (GE healthcare) for 2 hours

at 4uC. Beads were subsequently washed three times in RIPA

buffer. Elution of the immunoprecipitated proteins and assessment

of Foxa2 and its acetylation levels was similar as described above

for immunoprecipitation of FLAG-FOXA2.

This study was carried out following ethical approval for studies

on laboratory animals by the Dierexperimentencommissie (DEC)

of the UMC Utrecht. All efforts were undertaken to minimize

suffering of the animals.

Statistics
Protein expression levels were measured by densitometry using

Image J (http://rsbweb.nih.gov/ij/). Protein levels were expressed
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relative to actin protein levels after subtraction of background

intensity. Luciferase data are shown as mean +SEM from 3

independent experiments as analyzed by two-tailed Student’s t-test

with statistical significance P,0.05.

Results

FOXA2 is acetylated at multiple residues
The FOXA2 transcription factor is an essential player in liver

metabolism, although the precise regulation of this transcription

factor is not completely understood. We hypothesized that post-

translational modifications (PTMs) such as acetylation could affect

and differentially regulate the FOXA2 metabolic program. To

investigate whether FOXA2 is an acetylated protein, Liquid

Chromatography-tandem Mass Spectrometry (LC-MS/MS) anal-

yses were performed. To this end, FLAG-FOXA2 was ectopically

expressed in HEK293T cells, immunoprecipitated, digested by

proteases and subjected to LC-MS/MS analysis. Five peptides

were identified harboring 3 unambiguously detected acetylation

sites: K264, K274 and K275 (Fig. 1A, B). In addition, cells were

supplemented with histone deacetylase (HDAC) inhibitors nico-

tinamide (NAM) and Trichostatin A (TSA), which inhibit

endogenous deacetylase activity. Two additional unambiguously

identified acetylation sites were detected: K6 and K259 (Fig. 1B).

These observations indicate that FOXA2 can be acetylated on at

least 5 residues.

The LC-MS/MS analyses identified FOXA2 peptides covering

81% of the whole FOXA2 sequence (data not shown). Although it

cannot be excluded that acetylation sites were missed, the MS

analyses identified 15 out of all 19 lysine residues, with each lysine

covered several times. Next, the position of the acetylated sites was

mapped on the FOXA2 structure which revealed that they were

localized adjacent to the Forkhead domain (Fig. 1C).

Deacetylation of FOXA2 is mediated by SIRT1
The LC-MS/MS experiments revealed acetylated residues in

FOXA2 upon treatment with HDAC inhibitors (Fig. 1B),

suggesting that FOXA2 is a substrate for HDAC-mediated

deacetylation. To determine which family of HDACs is respon-

sible for deacetylation of FOXA2, FLAG-FOXA2 was ectopically

expressed in HEK293T cells which were incubated with TSA

(inhibitor of class I and II HDACs) and/or NAM (inhibitor of class

III NAD+-dependent deacetylases, or sirtuins). Using a pan-

acetylation-specific antibody (anti-acetyl-K) we observed that

FOXA2 was robustly acetylated in cells treated with NAM, but

not in cells with TSA alone (Fig. 2A). These data suggest that

FOXA2 is a sirtuin-dependent deacetylation substrate.

To investigate whether SIRT1 is capable of deacetylating

FOXA2, FLAG-FOXA2 and MYC-SIRT1 were co-expressed in

NAM-treated HEK293T cells. Similar as in Fig. 2A, FOXA2 was

robustly acetylated in the presence of NAM (Fig. 2B). Ectopic

expression of SIRT1 overcame the NAM-mediated inhibition of

endogenous sirtuin activity and completely blunted acetylation of

FOXA2. These data therefore suggest that FOXA2 is a substrate

for SIRT1-mediated deacetylation.

Figure 1. FOXA2 is an acetylated protein. (A) LC-MS/MS spectrum and the deduced peptide sequence of FOXA2 acetylation at lysine K275 (in
red). (B) Peptides containing five in vivo FOXA2 acetylation sites which were identified by LC-MS/MS analyses. FLAG-FOXA2 was expressed in human
kidney HEK293T cells, purified and digested with proteases. Peptides were separated and enriched by C18 analytical columns and subsequently
subjected to LC-MS/MS. Acetylated residues in red and underlined. (C) Schematic representation of the FOXA2 protein structure. Markers illustrate the
localization of the five acetylation sites and colored boxes represent functional domains. TAD, Trans Activation Domain. NLS, Nuclear Localization
Sequence.
doi:10.1371/journal.pone.0098438.g001
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SIRT1 interacts with and co-localizes with FOXA2 in the
nucleus

Next, we assessed whether SIRT1-mediated deacetylation of

FOXA2 occurs via a direct interaction of both proteins. Indeed,

upon ectopic expression in HEK293T cells, MYC-SIRT1 co-

immunoprecipitated with FLAG-FOXA2 suggesting that both

proteins interact (Fig. 2C). To further examine the SIRT1-

FOXA2 interaction, we performed a Proximity Ligation Assay

[28], an immunofluorescence-based method that allows for

intracellular detection of two proteins that are in close proximity

of each other [29]. A PLA assay performed on the human

hepatocellular carcinoma cell line HepG2, which endogenously

expresses FOXA2 and SIRT1, showed interaction of these

proteins (Fig. 2D). This interaction was strictly observed in the

nucleus, which is in agreement with the reported nuclear activity

of SIRT1 [30]. These findings were corroborated upon ectopic

expression of MYC-SIRT1 and FLAG-FOXA2 in human

osteosarcoma U2OS cells (which do not express FOXA2

endogenously), as we found a specific interaction of FLAG-

FOXA2 and MYC-SIRT1 by using FLAG- and SIRT1-specific

antibodies (data not shown). Collectively, these data show that

SIRT1 and FOXA2 interact at an endogenous level exclusively in

the nucleus.

Interaction of FOXA2 and SIRT1 is reduced upon nutrient
starvation

Because SIRT1 functions as a NAD+-dependent energy sensor

we wondered whether the interaction of SIRT1 with FOXA2 is

Figure 2. SIRT1 interacts with and deacetylates FOXA2. (A) Increase in FOXA2 acetylation by NAM. FLAG-FOXA2-transfected HEK293T cells
were treated with class I/II HDAC inhibitor TSA (5 mM), class III HDAC inhibitor NAM (20 mM) or both for 16 hours. Acetylation level of
immunoprecipitated FLAG-FOXA2 was assessed on Western Blot probed with an anti-acetylated-lysine specific antibody. (B) SIRT1 co-transfection
affects FOXA2 acetylation. HEK293T cells were transfected with FLAG-FOXA2 alone or together with MYC-SIRT1 in the presence of 20 mM NAM.
Acetylation was assessed as in (A). (C) SIRT1 interacts with FOXA2. HEK293T cells were co-transfected as in (B) followed by co-immunoprecipitation
with anti-FLAG M2 beads. Interaction of FLAG-FOXA2 and MYC-SIRT1 was assessed by Western Blot analysis with indicated antibodies. (D)
Endogenous FOXA2 and SIRT1 interact in the nucleus. HepG2 cells were subjected to immunofluorescence-based proximity ligation assay [28]. Nuclei
were counterstained with DAPI.
doi:10.1371/journal.pone.0098438.g002
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nutrient sensitive. To assess this, HEK293T cells, which ectopi-

cally expressed FLAG-FOXA2 and MYC-SIRT1, were subjected

to nutrient stress for 16 hours. Strikingly, when compared to cells

grown in standard medium, the interaction between FLAG-

FOXA2 and MYC-SIRT1 was decreased upon starvation

(deprivation of glucose and serum) (Fig. 3A). These findings were

corroborated by observations from a PLA assay, which revealed

that the interaction of endogenous FOXA2 and SIRT1 in HepG2

cells was reduced upon nutrient starvation (Fig. 3B). Collectively,

these data indicate that the interaction of SIRT1 with FOXA2 is

dependent on environmental nutrient levels.

SIRT1 inhibits FOXA2-driven transcription
FOXA2 is involved in regulating transcription of enzymes

involved in glucose and lipid homeostasis, such as glucose-6-

phosphatase (G6pase) and carnitine palmitoyltransferase 1a

(CPT1a), respectively [1,3]. To establish whether FOXA2-driven

transcription is affected in a SIRT1-dependent manner, we

performed a luciferase-driven transcription assay on G6pase and

CPT1a promoter constructs. In the presence of SIRT1, FOXA2-

driven transcription is blunted on both promoters (Fig. 4A, 4B).

Conversely, knockdown of endogenous SIRT1 in HEK293T cells

by siRNA revealed enhanced FOXA2-mediated transcription on

the G6pase promoter (Fig. 4C). Moreover, a progressive decrease in

FOXA2-driven transcription on the G6pase promoter was observed

which was inversely proportional to the amount of co-transfected

MYC-SIRT1 (Fig. 4D), indicating that SIRT1 affects the FOXA2

transcriptional program in a dose-dependent manner. Collectively,

these data demonstrate that SIRT1 can inhibit FOXA2-driven

transcription. Remarkably, expression analysis revealed that

FLAG-FOXA2 protein levels decreased concomitantly with

increasing amounts of co-transfected MYC-SIRT1 (Fig. 4D)

suggesting SIRT1 negatively affects FOXA2-driven transcription

by reducing FOXA2 protein levels, thereby modulating its

transcriptional output.

SIRT1-mediated deacetylation reduces FOXA2 protein
stability by targeting it towards proteasomal degradation

To further investigate whether endogenous SIRT1 is able to

affect FOXA2 protein levels, FLAG-FOXA2 was ectopically

expressed in HEK293T cells. Inhibition of endogenous SIRT1

activity by NAM resulted in enhanced protein levels of FOXA2

whereas FOXA2 mRNA levels remained unaffected (Fig. S1),

suggesting that sirtuin-controlled FOXA2 acetylation may be

important for FOXA2 protein stability (Fig. 5A).

The deacetylation activity of SIRT1 is mediated by a critical

histidine residue (H363) located in its NAD+-binding catalytic site

[31]. To investigate whether the acetylation state and concomitant

decrease in FOXA2 protein levels is dependent on the catalytic

activity of SIRT1, either wild type SIRT1 or the SIRT1-H363Y

catalytically-impaired mutant were co-expressed with FLAG-

FOXA2 in HEK293T cells. FOXA2 was found to interact with

both SIRT1 and SIRT1-H363Y (Fig. 5B), indicating that the

interaction is independent of SIRT1 activity. However, in contrast

to wild type SIRT1, expression of SIRT1-H363Y reduced

FOXA2 protein levels less severely, as FOXA2 expression was

67% (Fig. 5B) and 142% (Fig. 5C) higher upon co-transfection

with SIRT1-H363Y than with wild type SIRT1). In addition,

acetylation of FOXA2 was predominantly retained upon SIRT1-

H363Y co-expression (Fig. 5C). Hence, the NAD+-dependent

catalytic activity of SIRT1 appears to be required for the stability

of the FOXA2 protein.

To identify which acetylated residue(s) are critical for stabiliza-

tion of FOXA2, we iteratively mutated all the five identified lysines

(K) to arginine (R) residues. These mutant FOXA2 proteins were

ectopically expressed in HEK293T cells and endogenous SIRT1

activity was inhibited with NAM. When the 5 acetylation sites

identified by our LC-MS/MS analysis (Fig. 1B) were mutated it

was noted that protein expression levels were slightly reduced as

compared to wild type FOXA2, however a significant level of

acetylation was still observed (data not shown). This suggests that

other acetylated lysines must be present in FOXA2 that are

controlled in a sirtuin-dependent manner, and which were not

uncovered by our LC-MS/MS analysis. To investigate this

hypothesis, a FLAG-12K-R-FOXA2 mutant was generated, in

which 12 out of 19 FOXA2 lysine residues were changed to

arginine. K365 and K399 were additionally mutated since these

residues were not covered in our LC-MS/MS analyses, K149 was

found to be acetylated but with a non-significant peptide score

(data not shown), while K226, K229, K253 and K256, although

not identified as acetylated by the LC-MS/MS approach, could be

potential targets of histone acetyltransferase p300 since they make

up the -K-X-X-K- consensus motif of p300 [32]. Ectopic

expression in HEK293T cells showed a marked reduction of

FLAG-12K-R-FOXA2 protein levels compared to wild type

FOXA2 (Fig. 5D). In contrast to 12K-R-FOXA2 protein levels,

wild type FOXA2 expression was stabilized by NAM and the

acetylation level of FOXA2 was enhanced. Although 12K-R-

FOXA2 showed a low basal level of acetylation, little increase was

observed when cells were treated with NAM (Fig. 5D). Collec-

tively, these data indicate that these 12 lysines are critical for the

SIRT1-mediated regulation of FOXA2 acetylation levels.

Next, we investigated whether the SIRT1-mediated decrease in

FOXA2 protein levels is the result of proteasomal degradation of

FOXA2. Therefore, FLAG-FOXA2 was transfected in HEK293T

cells and treated with the proteasome inhibitor MG132 for 3 and

6 hours. Similar to treatment with NAM, FOXA2 protein levels

were increased upon MG132 treatment, suggesting that FOXA2 is

subject to degradation in the proteasome (Fig. 5E). Moreover, in

HepG2 cells, the observed reduction in endogenous FOXA2

protein levels resulting from MYC-SIRT1 expression was partly

abolished upon MG132 treatment (Fig. 5F), suggesting that

SIRT1-mediated deacetylation of FOXA2 leads, at least in part,

to FOXA2 degradation in the proteasome. Subsequently, we

blocked protein translation in HEK293T cells with cycloheximide

and found that protein levels of ectopically-expressed wild type

FOXA2 decreased substantially within 8 hours after cyclohexi-

mide addition. In contrast, prior treatment with NAM abrogated

the decrease in FOXA2 protein levels induced by cycloheximide

(Fig. 5G). Collectively, these data show that acetylation of FOXA2

protects the protein from degradation.

As FOXA2 is degraded at least in part by the proteasome, we

wondered whether the protein is prone to ubiquitination.

Therefore, we immunoprecipitated ectopically expressed wild-

type or 12K-R FLAG-FOXA2 from HEK293T cells, blocked

proteasomal degradation, and assessed the level of FOXA2

ubiquitylation. We found that the 12K-R mutant showed an

increased level of poly-ubiquitination than wild-type FOXA2

(Fig. 5H). Of note, we observed that FOXA2 was also mono-

ubiquitinated at three sites (Fig. 5H; arrows), and that the level of

mono-ubiquitination was increased in the 12K-R mutant. These

data at least suggest that the higher level of ubiquitination of the

12K-R deacetylation-mimicking mutant results in reduced protein

stability by targeting the protein towards degradation in the

proteasome.
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Nutrient deprivation enhances acetylation of Foxa2 in
murine livers

FOXA2 is predominantly expressed in metabolically active

tissues such as liver and pancreas. To test if the nutrient-dependent

acetylation of FOXA2 also occurs in vivo, we assessed Foxa2

acetylation levels in livers from mice fed with either a isocaloric

diet (ad libitum fed, AL) or which had a diet consisting of 25% of ad

libitum levels (starved, ST) for 36 hours. Endogenously expressed

Foxa2 was immunoprecipitated from liver homogenates and

acetylation levels were assessed on Western Blot with a pan-

acetylation-specific antibody. Acetylation levels of Foxa2 in livers

from ST mice were increased as compared to those in livers of AL

fed mice (Fig. 5I), revealing that Foxa2 is regulated by acetylation

in a nutrient-dependent manner in vivo.

Discussion

Mammalian Foxa2 regulates glucose and lipid homeostasis in

the liver [3–7] in response to fasting, but how this transcription

Figure 3. Nutrient withdrawal reduces SIRT1 and FOXA2 interaction. (A) Nutrient withdrawal reduced SIRT1-FOXA2 interaction. HEK293T
cells were co-transfected with indicated constructs and starved from glucose and serum for 16 hours. FOXA2 and SIRT1 were co-immunoprecipitated
with anti-FLAG-M2 beads and protein levels were assessed by Western Blot analysis probed with the indicated antibodies. Relative interaction is
defined as the fraction of FOXA2 that binds to SIRT1. (B) Reduced endogenous interaction of FOXA2 and SIRT1 in the nucleus upon nutrient
withdrawal as in A for 2 or 4 hours. Interaction between endogenously expressed SIRT1 and FOXA2 was assessed in HepG2 cells by PLA. Nuclei were
counterstained with DAPI.
doi:10.1371/journal.pone.0098438.g003
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Figure 4. SIRT1 inhibits FOXA2-driven transcription. (A) and (B) SIRT1 co-transfection affects the FOXA2 transcriptional program. HEK293T cells
were co-transfected with the indicated constructs and TK Renilla in combination with (A) G6pase and (B) CPT1a reporter constructs. After 48 hours, a
luciferase-driven transcriptional assay was performed to assess FOXA2-mediated transcriptional activity on the promoter constructs. (C) SIRT1 knock-
down increased FOXA2-driven transcription on the G6pase gene promoter. HEK293T cells were transfected with either control, or SIRT1 siRNA and
subsequently co-transfected as in (A). Transcriptional activity was assessed via luciferase assays. (D) SIRT1 affects FOXA2-driven transcription by
reducing FOXA2 protein levels. HEK293T cells were transfected as in (A) with FLAG-FOXA2 alone or in combination with increasing amounts of MYC-
SIRT1. Empty pcDNA3 vector was co-transfected to balance between samples for the amount of DNA transfected. Transcriptional analysis was
determined by luciferase assays. Values shown represent the mean of three independent experiments +SEM. Statistical analysis was performed by
two-tailed Student’s t-Test. **, P,0.01. Protein levels were assessed by Western Blotting using indicated antibodies. Actin was used as loading
control.
doi:10.1371/journal.pone.0098438.g004
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factor is controlled and how it relays signals in response to

extracellular cues, is not completely understood. The present study

provides evidence for nutrient-dependent post-translational regu-

lation of FOXA2 via acetylation which is negatively regulated by

the sirtuin deacetylase family member SIRT1. By means of LC-

MS/MS analyses, we identified 5 acetylated lysine residues on

FOXA2 and found that SIRT1 interacts with and deacetylates

FOXA2 in a nutrient-dependent manner. Importantly, upon

deacetylation by SIRT1, FOXA2 becomes susceptible to protea-

somal degradation by enhanced mono- and poly-ubiquitination,

hence affecting the FOXA2 transcriptional program due to

reduced FOXA2 protein levels. We confirmed these observations

in vivo by showing that acetylation levels of Foxa2 in mouse liver

were increased upon nutrient starvation, likely resulting from

reduced interaction between Foxa2 and Sirt1. Therefore, we

propose that acetylation of FOXA2 serves as a rapid mechanism

to prevent degradation of FOXA2, when it is needed to regulate

metabolic homeostasis in times of nutrient shortage. In addition,

these data suggest that FOXA2-mediated transcriptional regula-

tion of metabolism is directly controlled by SIRT1 upon changes

in intracellular energy levels.

In our LC-MS/MS analyses, 3 of the 5 identified acetylated

lysine residues were found to be specifically present in FOXA2,

whereas the conserved K6 and K259 were also found acetylated in

Figure 5. SIRT1-mediated deacetylation targets FOXA2 towards proteasomal degradation. (A) SIRT1 affects FOXA2 protein stability.
HEK293T cells were transfected with FLAG-FOXA2 in the presence of 20 mM NAM or vehicle for 16 hours prior to cell lysis. Western Blots were probed
for FLAG, and actin as a loading control. (B) Wild type SIRT1 and mutant SIRT1 H363Y similarly interact with FOXA2. HEK293T cells were transfected
with FLAG-FOXA2 alone or in combination with either wild-type (wt) or the catalytically impaired MYC-SIRT1-H363Y mutant. FOXA2 and SIRT1 were
co-immunoprecipitated with anti-FLAG-M2 beads and protein levels were assessed by Western Blot analysis probed with the indicated antibodies. (C)
SIRT1 catalytic activity regulates FOXA2 stability. HEK293T cells were transfected and subjected to co-immunoprecipitation as in (B). Protein
expression and FOXA2 acetylation level were assessed by Western Blot using the indicated antibodies. (D) Acetylation-impaired FLAG-12K-R-FOXA2
mutant showed reduced acetylation and protein stability. HEK293T cells were transfected with either FLAG-FOXA2 or FLAG-12K-R-FOXA2 and
cultured as in (A). After FLAG-immunoprecipitation, protein levels were assessed by Western Blot probed with the indicated antibodies. (E) FOXA2 is
subjected to proteasomal degradation in a time-dependent manner. HEK293T cells were transfected with FLAG-FOXA2 and supplemented with
proteasome inhibitor MG132 (20 mM) or vehicle-containing medium for 3 or 6 hours. FOXA2 protein levels were assessed by Western Blot, and actin
as a loading control. (F) SIRT1 mediates endogenous FOXA2 breakdown. HepG2 cells were transfected with MYC-SIRT1 and supplemented with
20 mM MG132- or vehicle-containing medium for 3 hours. (G) NAM preserves stability of FOXA2 upon abrogation of protein translation. HEK293T cells
were transfected with FLAG-FOXA2 and supplemented 20 mM NAM or vehicle for 16 hours, followed by addition of cycloheximide (5 mg/ml) or
vehicle-containing medium for 4 or 8 hours. (E–G) show a representative experiment from three independent experiments, and quantification of
FOXA2 protein levels was performed by normalizing to actin protein levels. (H) 12K-R FOXA2 mutant has a higher level of poly-ubiquitylation.
HEK293T cells were transfected with FLAG-FOXA2 or FLAG-12K-R-FOXA2. After culture of 20 mM MG132 for 3 hours, FOXA2 was immunoprecipitated
with FLAG-M2 beads and immunoprecipitated proteins were assessed by Western Blot probed with the indicated antibodies. (I) Nutrient-dependent
regulation of Foxa2 acetylation level in murine livers. Murine Foxa2 was immunoprecipitated from whole liver protein lysates from mice fed ad libitum
(AL) or starved (ST) to 25% of ad libitum levels. Western Blots were probed with the indicated antibodies. The asterisk (*) marks a co-eluting acetylated
protein of unknown identity.
doi:10.1371/journal.pone.0098438.g005

Figure 6. Model for nutrient-dependent regulation of FOXA2 stability via SIRT1-mediated deacetylation. Graphical representation of
the interaction and deacetylation of FOXA2 by SIRT1 depending on available nutrient levels. In times of nutrient excess (left panel) SIRT1 interacts
with FOXA2 in the nucleus, resulting in FOXA2 deacetylation and subsequent proteasomal degradation. When nutrients are limited (right panel),
FOXA2 is required to exert its transcriptional program in the nucleus. The interaction of FOXA2 with SIRT1 is diminished, resulting in enhanced
acetylation and stability of FOXA2.
doi:10.1371/journal.pone.0098438.g006
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FOXA1. For example, lysine K6 is conserved among all FOXA

members and indeed we identified this residue acetylated on

FOXA1 as well (data not shown). Interestingly, Belagouli et al.

[33] reported that stability of FOXA2 is regulated by sumoylation

on residue K6. The metabolic cofactor CRTC2 has recently been

shown to be deacetylated by SIRT1 and then subjected to

sumoylation-driven breakdown [34]. It is therefore attractive to

speculate that competition between these modifications on K6

may regulate protein levels of FOXA2 in response to SIRT1.

However, K6 itself seemed not essential to regulate SIRT1-

mediated FOXA2 stability at least in kidney cells, as mutation of

this residue to arginine (K to R) showed relatively similar FOXA2

protein and acetylation levels as the wild type protein (data not

shown). It is important to note that mutation of K6 also renders

the protein unsusceptible to sumoylation and therefore further

research is needed to determine whether any interplay between

sumoylation and acetylation on FOXA2 K6 occurs in other cell

types.

We found that mutation of at least twelve lysines was required to

reduce the overall acetylation signal on FOXA2. Of note, some of

the mutated lysines may only represent putative acetylation sites

for example due to low stoichiometry and as a result these may not

be identified by LC-MS/MS. Some lysines in FOXA2 were not

covered by LC-MS/MS despite various digestion strategies, and

therefore further confirmation is needed to dissect whether other

than the identified residues in FOXA2 are acetylated. Neverthe-

less, the acetylation sites that were uncovered by our LC-MS/MS

analyses play an important role in regulating FOXA2 protein

stability.

In our study, FOXA2 was found to be both mono- and poly-

ubiquitinated. Poly-ubiquitination is primarily regarded as a signal

that enables transport of the protein to the proteasome for

degradation. This notion is in line with our observation that

breakdown of FOXA2, mediated by SIRT1 is MG132 sensitive

and suggests that at least part of the FOXA2 degradation is

mediated by the proteasome. Mono-ubiquitination, however, can

impact proteins in various ways and has been described to affect

cellular events including DNA repair, gene expression, endocytosis

and nuclear export [35]. However, it has also been demonstrated

that mono-ubiquitination can also provide a signal for lysosomal

degradation of proteins [36]. Although further study is required to

determine the exact role for the three mono-ubiquitinated sites in

FOXA2, the increase in the level of mono-ubiquitination in the

12K-R mutant may imply their involvement in breakdown of

FOXA2.

In agreement with our data, a recently published study by Von

Meyenn et al. [37] elegantly showed K259 and K275 as acetylated

residues in Foxa2. Acetylation of K259 was induced by p300 by

glucagon-mediated signaling during fasting, resulting in expression

of genes involved in b-oxidation and ketone body formation. Von

Meyenn et al. also showed that SIRT1 is able to deacetylate Foxa2.

The work reported here corroborates these findings and goes on to

add a novel dimension to these observations. Rather than

observing effects of acetylation on Foxa2 shuttling, we observe

that SIRT1 affects FOXA2 transcriptional output in a nutrient-

dependent manner by means of regulating FOXA2 protein

stability. The nuclear shuttling of Foxa2 in an insulin-dependent

manner reported by the Stoffel group [3,15] remains controversial

as we (data not shown) and others have not found any evidence for

this, which has been discussed elsewhere in detail [6,13]. However,

our observation that SIRT1 mediates stability of FOXA2 protein

levels does not exclude the nuclear shuttling model, but in contrast

represents another layer of regulation of FOXA2 by means of

acetylation to execute the appropriate metabolic program during

nutrient limitation. Taken together, the maintenance of FOXA2

expression and function by acetylation seems dually regulated

during nutrient deprivation. On the one hand, glucagon signaling

enhances p300 acetyltransferase activity to induce acetylation of

FOXA2. On the other hand, the reduced interaction of SIRT1

and FOXA2 enhances acetylation of FOXA2 by the loss of

SIRT1-mediate deacetylation of the protein. It remains unclear

how the FOXA2-SIRT1 interaction is reduced upon nutrient

deprivation. Possibly alterations in other post-translational mod-

ifications, e.g. phosphorylation of either FOXA2 or SIRT1, may

reduce the interaction between both proteins. Alternatively,

enhanced activation of p300 (increased phosphorylation of

Ser89) upon glucagon signaling may compete with SIRT1 for

access to the acetylation sites on FOXA2 [34]. Further research on

the FOXA2-SIRT1 interaction is required to fully understand this

nutrient dependent regulation of FOXA2.

The work reported here also shows additional differences

compared to the work presented by Von Meyenn et al. Firstly,

Von Meyenn et al. studied murine Foxa2 and showed that

mutation of K259 and K275 residues to arginine completely

blunted overall Foxa2 acetylation in Hepa1-6 cells. Secondly,

pharmacological inhibition by NAM alone was not sufficient to

increase Foxa2 K259 acetylation levels, and inhibition of HDACs

was additionally required. In contrast, we report here the

requirement of at least 12 mutated lysines for reduction of the

acetylation signal of FOXA2, and a robust induction of acetylation

by NAM treatment alone. Moreover, we identified three

additional acetylation sites in FOXA2 when ectopically expressed

in HEK293T cells. These differences could be related to species

differences of the cell types and constructs that were used. This

notion is supported by von Meyenn et al. as they show that only

acetylation of one of the two identified acetylation sites (K259) in

murine Foxa2 was found in human HepG2 cells whereas both

K259 and K275 were found in mouse Hepa1-6 cells [37].

Moreover, the level of coverage likely contributes as 81% of

FOXA2 was covered by LC-MS/MS in our study as compared to

37% and 57% of Foxa2 in the study of Von Meyenn et al. Indeed,

we identified acetylation on K6, a residue that was not covered by

Von Meyenn et al.

In conclusion, we propose a model in which FOXA2 protein

levels are regulated by SIRT1 via acetylation-mediated proteaso-

mal degradation (Fig. 6). In the presence of nutrients, FOXA2 is

dispensable for metabolic homeostasis and therefore the balance is

towards a deacetylated state, mediated by SIRT1, resulting in

enhanced degradation of FOXA2 in the proteasome. Conversely,

in times of nutrient stress, FOXA2 needs to be switched on to

drive gluconeogenesis, b-oxidation and ketone body formation.

FOXA2 is then released from the inhibitory interaction with

SIRT1 by an, as of yet, unknown mechanism, thereby reducing

FOXA2 deacetylation. In addition, glucagon signaling enhances

p300 activity in a cAMP-PKA dependent manner to drive Foxa2

acetylation [34,37]. Together with previous published work, our

data provides better understanding of the molecular control of

metabolism by SIRT1 and FOXA2, and therefore may contribute

to the development of intervention strategies for metabolic

derangements like diabetes or obesity.

Supporting Information

Figure S1 NAM does not affect mRNA levels of FOXA2.

HEK293T cells were transfected with FLAG-FOXA2 or empty

vector. Cells were cultured with or without 20 mM NAM for

16 hours, after which cells were lysed, RNA was isolated and

mRNA levels of FOXA2 were determined by quantitative RT-
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PCR. 18 S mRNA levels were used as a reference. Results depict

mean+SEM from three independent experiments.

(TIF)
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