34 research outputs found

    Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis

    Get PDF
    Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca2+] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic.The work is supported by an MRC Studentship to JFM and a Wellcome Trust Investigator award to RCH (110158/Z/15/Z), the Leducq Transatlantic Network of Excellence, and the University of Padova Strategico grant (FDL). Part of the study was funded by an MRC Project Grant to TK (MR/P000320/1). Michele Cariello is thanked for help with cyclic voltammetry

    mCerulean3-Based Cameleon Sensor to Explore Mitochondrial Ca2+ Dynamics In Vivo

    Get PDF
    Genetically Encoded Ca2+ Indicators (GECIs) are extensively used to study organelle Ca2+ homeostasis, although some available probes are still plagued by a number of problems, e.g., low fluorescence intensity, partial mistargeting, and pH sensitivity. Furthermore, in the most commonly used mitochondrial F\uf6rster Resonance Energy Transfer based-GECIs, the donor protein ECFP is characterized by a double exponential lifetime that complicates the fluorescence lifetime analysis. We have modified the cytosolic and mitochondria-targeted Cameleon GECIs by (1) substituting the donor ECFP with mCerulean3, a brighter and more stable fluorescent protein with a single exponential lifetime; (2) extensively modifying the constructs to improve targeting efficiency and fluorescence changes caused by Ca2+ binding; and (3) inserting the cDNAs into adeno-associated viral vectors for in vivo expression. The probes have been thoroughly characterized in situ by fluorescence microscopy and Fluorescence Lifetime Imaging Microscopy, and examples of their ex vivo and in vivo applications are described

    Ontogenetic Profile of the Expression of Thyroid Hormone Receptors in Rat and Human Corpora Cavernosa of the Penis

    Get PDF
    Introduction. In the last few years, various studies have underlined a correlation between thyroid function and male sexual function, hypothesizing a direct action of thyroid hormones on the penis. Aim. To study the spatiotemporal distribution of mRNA for the thyroid hormone nuclear receptors (TR) alpha 1, alpha 2 and beta in the penis and smooth muscle cells (SMCs) of the corpora cavernosa of rats and humans during development. Methods. We used several molecular biology techniques to study the TR expression in whole tissues or primary cultures from human and rodent penile tissues of different ages. Main Outcome Measure. We measured our data by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) amplification, Northern blot and immunohistochemistry. Results. We found that TR alpha 1 and TR alpha 2 are both expressed in the penis and in SMCs during ontogenesis without development-dependent changes. However, in the rodent model, TR beta shows an increase from 3 to 6 days post natum (dpn) to 20 dpn, remaining high in adulthood. The same expression profile was observed in humans. While the expression of TR beta is strictly regulated by development, TR alpha 1 is the principal isoform present in corpora cavernosa, suggesting its importance in SMC function. These results have been confirmed by immunohistochemistry localization in SMCs and endothelial cells of the corpora cavernosa. Conclusions. The presence of TRs in the penis provides the biological basis for the direct action of thyroid hormones on this organ. Given this evidence, physicians would be advised to investigate sexual function in men with thyroid disorders. Carosa E, Di Sante S, Rossi S, Castri A, D'Adamo F, Gravina GL, Ronchi P, Kostrouch Z, Dolci S, Lenzi A, and Jannini EA. Ontogenetic profile of the expression of thyroid hormone receptors in rat and human corpora cavernosa of the penis. J Sex Med 2010;7:1381-1390

    Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes.

    Get PDF
    Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Eating disorders and psychopathological traits in obese preadolescents and adolescents

    No full text
    Objective: to investigate the presence of eating disorders (ED) and psychopathological traits in obese preadolescents and adolescents compared to normal-weight peers. Design: Overweight/obese patients aged 11 to 14 y and normal-weight peers’ data collected by means of self-report questionnaires administered to parents and children. Setting: Clinical Nutrition Units in the Municipalities of Rome, Naples, Gallipoli and Atri, Italy. Subjects: 376 preadolescents and adolescents. Patients were 187 (93 boys, BMID27.9 §;4.1; 94 girls, BMID28.1 §4.5); normal-weight controls were 189 subjects (94 boys, BMID19.4 §1.4; 95 girls, BMID19.5 §1.5). Measures of outcome: eating disorder behaviors, psychopathological traits and symptoms estimated by means of the eating disorders scales (EDI-2) and psychopathological scales (CBCL 4–18). Results: Patients reached higher scores than controls in most of the eating disorders scales and psychopathological scales. Twenty-one (11.2%) patients were considered at risk of developing an eating disorder and 75 (40%) presented social problems. With regard to weight status, age-group and gender, main significant interaction effects were seen in social problems (FD 6.50; p<0.05) and ineffectiveness (FD 4.15; p<0.05). Conclusions: Findings from our study demonstrate that in preadolescence and adolescence, obesity is significantly associated to some traits typical of ED and to psychological problems in general. Although no inference can be made with regard to direction of causality, it is possible to conclude that overweight preadolescents and adolescents can be prone to display problematic traits more commonly associated to eating disorders and to present a high degree of mental distress

    Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation

    No full text
    : During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to β-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes
    corecore