Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis

Abstract

Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca2+] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic.The work is supported by an MRC Studentship to JFM and a Wellcome Trust Investigator award to RCH (110158/Z/15/Z), the Leducq Transatlantic Network of Excellence, and the University of Padova Strategico grant (FDL). Part of the study was funded by an MRC Project Grant to TK (MR/P000320/1). Michele Cariello is thanked for help with cyclic voltammetry

    Similar works