37 research outputs found

    Electronic Properties of Novel Mid-Infrared Materials and Devices

    Get PDF
    This thesis describes the effects of the combined incorporation of nitrogen (N) and hydrogen (H) atoms in the narrow gap III-V InAs semiconductor. The plasmonic properties of the dilute nitride In(AsN) alloy are investigated before and after the post-growth incorporation of H-atoms. The hydrogenation of In(AsN) leads to a substantial increase of the electron density near the surface. The optical excitation of In(AsN):H creates a mid-infrared (MIR) surface plasmon polariton (SPP) mode detected by reflectance techniques. The plasmonic response of the highly doped In(AsN):H compound is spatially tailored and suppressed by different techniques, such as laser or electron beam annealing, as probed by Raman spectroscopy and scanning electron microscopy (SEM). This approach enables the control of the electron density of a highly doped semiconductor by changing its chemical composition on the m-scale. Furthermore, the effects of the incorporation of N in the quantum well (QW) layer of an In(AsN)/(InAl)As resonant tunnelling diode (RTD) are presented. We show that the N-incorporation leads to the creation of strongly localized zero-dimensional (0D) states in the band gap of In(AsN). These contribute to an extended and weakly temperature dependent negative differential resistance (NDR) in the current-voltage (I-V) characteristic of the diode, not observed in N-free RTDs. This behaviour is attributed to a new type of Zener tunnelling assisted by N-related 0D states, whose size is probed by magneto-tunnelling experiments. These N-related states also contribute to the tuning of the MIR electroluminescence (EL) of the RTD, which notably also shows the occurrence of up-conversion up to room temperature

    Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode

    Get PDF
    Light emitting diodes (LEDs) in the mid-infrared (MIR) spectral range require material systems with tailored optical absorption and emission at wavelengths lambda > 2 mu m. Here, we report on MIR LEDs based on In(AsN)/(InAl)As resonant tunneling diodes (RTDs). The N-atoms lead to the formation of localized deep levels in the In(AsN) quantum well (QW) layer of the RTD. This has two main effects on the electroluminescence (EL) emission. By electrical injection of carriers into the N-related levels, EL emission is achieved at wavelengths significantly larger than for the QW emission (lambda similar to 3 mu m), extending the output of the diode to lambda similar to 5 mu m. Furthermore, for applied voltages well below the flatband condition of the diode, EL emission is observed at energies much larger than those supplied by the applied voltage and/or thermal energy, with an energy gain Delta E>0.2eV at room temperature. We attribute this upconversion luminescence to an Auger-like recombination process

    Optical detection and spatial modulation of mid-infrared surface plasmon polaritons in a highly doped semiconductor

    Get PDF
    Highly doped semiconductors (HDSCs) are promising candidates for plasmonic applications in the mid-infrared (MIR) spectral range. This work examines a recent addition to the HDSC family, the dilute nitride alloy In(AsN). Post-growth hydrogenation of In(AsN) creates a highly conducting channel near the surface and a surface plasmon polariton detected by attenuated total reflection techniques. The suppression of plasmonic effects following a photo-annealing of the semiconductor is attributed to the dissociation of the N-H bond. This offers new routes for direct patterning of MIR plasmonic structures by laser writing

    Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions

    Full text link
    tThe influence of temperature and the effect of aggressive anions on the electrochemical behaviour of UNSN08031 stainless steel in a contaminated phosphoric acid solution were evaluated. Stabilisation of thepassive film was studied by potentiodynamic polarisation curves, potentiostatic tests, electrochemicalimpedance spectroscopy (EIS) measurements, Mott Schottky analysis and X-ray photoelectron spec-troscopy (XPS). The stability of the passive film was found to decrease as temperature increases. The filmformed on the stainless steel surface was a n-type semiconductor and the XPS spectrum revealed thepresence of fluoride ions.Authors express their gratitude to the Ministry of Education of Spain (MHE2011-00202) for its financial support during the stay at University of Manchester, to MAEC of Spain (PCI Mediterraneo C/8196/07, C/018046/08, D/023608/09 and D/030177/10) and to the Generalitat Valenciana (GV/2011/093) for the financial support. The authors would also like to acknowledge the support of the School of Materials at the University of Manchester for providing analytical and technical support for the study.Escrivá Cerdán, C.; Blasco Tamarit, ME.; García García, DM.; García Antón, J.; Akid, R.; Walton, J. (2013). Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions. Electrochimica Acta. 111:552-561. https://doi.org/10.1016/j.electacta.2013.08.040S55256111

    Disease-related cortical thinning in presymptomatic granulin mutation carriers

    Get PDF
    Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting a

    Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    A key symptom of frontotemporal dementia (FTD) is difficulty interacting socially with others. Social cognition problems in FTD include impaired emotion processing and theory of mind difficulties, and whilst these have been studied extensively in sporadic FTD, few studies have investigated them in familial FTD. Facial Emotion Recognition (FER) and Faux Pas (FP) recognition tests were used to study social cognition within the Genetic Frontotemporal Dementia Initiative (GENFI), a large familial FTD cohort of C9orf72, GRN, and MAPT mutation carriers. 627 participants undertook at least one of the tasks, and were separated into mutation-negative healthy controls, presymptomatic mutation carriers (split into early and late groups) and symptomatic mutation carriers. Groups were compared using a linear regression model with bootstrapping, adjusting for age, sex, education, and for the FP recognition test, language. Neural correlates of social cognition deficits were explored using a voxel-based morphometry (VBM) study. All three of the symptomatic genetic groups were impaired on both tasks with no significant difference between them. However, prior to onset, only the late presymptomatic C9orf72 mutation carriers on the FER test were impaired compared to the control group, with a subanalysis showing differences particularly in fear and sadness. The VBM analysis revealed that impaired social cognition was mainly associated with a left hemisphere predominant network of regions involving particularly the striatum, orbitofrontal cortex and insula, and to a lesser extent the inferomedial temporal lobe and other areas of the frontal lobe. In conclusion, theory of mind and emotion processing abilities are impaired in familial FTD, with early changes occurring prior to symptom onset in C9orf72 presymptomatic mutation carriers. Future work should investigate how performance changes over time, in order to gain a clearer insight into social cognitive impairment over the course of the disease

    Electronic Properties of Novel Mid-Infrared Materials and Devices

    No full text
    This thesis describes the effects of the combined incorporation of nitrogen (N) and hydrogen (H) atoms in the narrow gap III-V InAs semiconductor. The plasmonic properties of the dilute nitride In(AsN) alloy are investigated before and after the post-growth incorporation of H-atoms. The hydrogenation of In(AsN) leads to a substantial increase of the electron density near the surface. The optical excitation of In(AsN):H creates a mid-infrared (MIR) surface plasmon polariton (SPP) mode detected by reflectance techniques. The plasmonic response of the highly doped In(AsN):H compound is spatially tailored and suppressed by different techniques, such as laser or electron beam annealing, as probed by Raman spectroscopy and scanning electron microscopy (SEM). This approach enables the control of the electron density of a highly doped semiconductor by changing its chemical composition on the m-scale. Furthermore, the effects of the incorporation of N in the quantum well (QW) layer of an In(AsN)/(InAl)As resonant tunnelling diode (RTD) are presented. We show that the N-incorporation leads to the creation of strongly localized zero-dimensional (0D) states in the band gap of In(AsN). These contribute to an extended and weakly temperature dependent negative differential resistance (NDR) in the current-voltage (I-V) characteristic of the diode, not observed in N-free RTDs. This behaviour is attributed to a new type of Zener tunnelling assisted by N-related 0D states, whose size is probed by magneto-tunnelling experiments. These N-related states also contribute to the tuning of the MIR electroluminescence (EL) of the RTD, which notably also shows the occurrence of up-conversion up to room temperature

    A classification prognostic score to predict OS in stage IV well-differentiated neuroendocrine tumors

    No full text
    No validated prognostic tool is available for predicting overall survival (OS) of patients with well-differentiated neuroendocrine tumors (WDNETs). This study, conducted in three independent cohorts of patients from five different European countries, aimed to develop and validate a classification prognostic score for OS in patients with stage IV WDNETs. We retrospectively collected data on 1387 patients: (i) patients treated at the Istituto Nazionale Tumori (Milan, Italy; n = 515); (ii) European cohort of rare NET patients included in the European RARECAREnet database (n = 457); (iii) Italian multicentric cohort of pancreatic NET (pNETs) patients treated at 24 Italian institutions (n = 415). The score was developed using data from patients included in cohort (i) (training set); external validation was performed by applying the score to the data of the two independent cohorts (ii) and (iii) evaluating both calibration and discriminative ability (Harrell C statistic). We used data on age, primary tumor site, metastasis (synchronous vs metachronous), Ki-67, functional status and primary surgery to build the score, which was developed for classifying patients into three groups with differential 10-year OS: (I) favorable risk group: 10-year OS 6570%; (II) intermediate risk group: 30% 64 10-year OS < 70%; (III) poor risk group: 10-year OS <30%. The Harrell C statistic was 0.661 in the training set, and 0.626 and 0.601 in the RARECAREnet and Italian multicentric validation sets, respectively. In conclusion, based on the analysis of three 'field-practice' cohorts collected in different settings, we defined and validated a prognostic score to classify patients into three groups with different long-term prognoses
    corecore