61 research outputs found
Simultaneous, But Not Consecutive, Combination With Folinate Salts Potentiates 5-fluorouracil Antitumor Activity In Vitro and In Vivo
The combination of folinate salts to 5-fluoruracil (5-FU)-based schedules is an established clinical routine in the landscape of the colorectal cancer treatment. The aim of this study was to investigate the pharmacological differences between the sequential administration of folinate salts (1 h before, as in clinical routine) followed by 5-FU and the simultaneous administration of both drugs. Proliferation and apoptotic assays were performed on human colon cancer cells exposed to 5-FU, calcium (CaLV) or disodium (NaLV) levofolinate or their simultaneous and sequential combination for 24 and 72h. TYMS and SLC19A1 gene expression was performed with real time PCR. In vivo experiments were performed in xenografted nude mice, treated with 5-FU escalating doses and CaLV or NaLV alone or in simultaneous and sequential combination. The simultaneous combination of folinate salts and 5-FU was synergistic (NaLV) or additive (CaLV) in a 24h treatment in both cell lines. In contrast, the sequential combination of both folinate salts and 5-FU was antagonistic at 24 and 72h. The simultaneous combination of 5-FU and NaLV or CaLV inhibited TYMS gene expression at 24h, whereas the sequential combination reduced SLC19A1 gene expression. In vivo experiments confirmed the enhanced antitumor activity of the 5-FU+NaLV simultaneous combination with a good toxicity profile, whereas the sequential combination with CaLV failed to potentiate 5-FU activity. In conclusion, only the simultaneous, but not the consecutive, in vitro and in vivo combination of 5-FU and both folinate salt formulations potentiated the antiproliferative effects of the drugs
Potent efficacy of metronomic topotecan and pazopanib combination therapy in preclinical models of primary or late stage metastatic triple-negative breast cancer
Metronomic chemotherapy has shown promising activity in numerous preclinical studies and also some phase II clinical studies involving various tumor types, and is currently undergoing phase III trial evaluation. Triple-negative breast cancer (TNBC) is an aggressive histological subtype with limited treatment options and very poor prognosis following progression after standard chemotherapeutic regimens. Herein, we evaluated the potential therapeutic impact and molecular mechanisms of topotecan administered in a continuous low-dose metronomic (LDM) manner, alone or in concurrent combination with pazopanib, an antiangiogenic tyrosine kinase inhibitor (TKI), in a triple-negative, primary and metastatic breast cancer orthotopic model; potential molecular mechanisms of efficacy were also studied, especially the impact of hypoxic conditions. The combination of metronomic topotecan and pazopanib significantly enhanced antitumor activity compared to monotherapy with either drug and prolonged survival, even in the advanced metastatic survival setting, with a marked decrease in tumor vascularity, proliferative index, and the induction of apoptosis. Significant changes in tumor angiogenesis, cancer cell proliferation, apoptosis, HIF1α levels, HIF-1 target genes and ABCG2 were found both in vitro and in tumor tissue. Notably, the pazopanib and metronomic topotecan combination treatment inhibited expression of HIF1α and ABCG2 genes in cells grown under hypoxic conditions, and this was associated with an increased intracellular concentration of the active form of topotecan. Our results suggest a potential novel therapeutic option for the treatment of metastatic triple-negative breast cancer patients
Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo
Lenvatinib is an oral, multitargeted tyrosine kinase inhibitor (TKI) of VEGFR1-VEGFR3, FGFR1-FGFR4, PDGFRα, RET and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) signaling networks involved in tumor angiogenesis. We have evaluated the antitumor activity of lenvatinib in primary anaplastic thyroid cancer (ATC) cells, in the human cell line 8305C (undifferentiated thyroid cancer) and in an ATC-cell line (AF). The AF cell line was obtained from the primary ATC cultures and was the one that grew over 50 passages. The effect of lenvatinib (1 and 100 nM; and 1, 10, 25 and 50 μM) was investigated in primary ATC, 8305C and AF cells as well as in AF cells in CD nu/nu mice. Lenvatinib significantly reduced ATC cell proliferation (P<0.01, ANOVA) and increased the percentage of apoptotic ATC cells (P<0.001, ANOVA). Furthermore, lenvatinib inhibited migration (P<0.01) and invasion (P<0.001) in ATC. In addition, lenvatinib inhibited EGFR, AKT and ERK1/2 phosphorylation and downregulated cyclin D1 in the ATC cells. Lenvatinib also significantly inhibited 8305C and AF cell proliferation, increasing apoptosis. AF cells were subcutaneously injected into CD nu/nu mice and tumor masses were observed 20 days later. Tumor growth was significantly inhibited by lenvatinib (25 mg/kg/day), as well as the expression of VEGF-A and microvessel density in the AF tumor tissues. In conclusion, the antitumor and antiangiogenic activities of lenvatinib may be promising for the treatment of anaplastic thyroid cancer, and may consist a basis for future clinical therapeutic applications
Dual Kit/Aur Inhibitors as Chemosensitizing Agents for the Treatment of Melanoma: Design, Synthesis, Docking Studies and Functional Investigation
Melanoma is the most serious form of skin cancer but its medication is still far from being safe and thoroughly effective. The search of novel therapeutic approaches represents therefore a health emergency to push through eagerly. In this study, we describe a novel class of dual c-Kit/Aur inhibitors, characterized by a 1,2,4-triazole core and developed by a structure-based optimization of a previously developed hit, and report the evidence of their significance as drug candidates for the treatment of melanoma. Compound 6a, merging the best inhibitory profile against the target kinases, showed anti-proliferative efficacy against the human melanoma cell lines A2058, expressing the BRAF V600D mutation, and WM266-4, expressing BRAF V600E. Significantly, it displayed also a highly synergistic profile when tested in combination with vemurafenib, thus proving its efficacy not only per se but even in a combination therapy, which is nowadays acknowledged as the cornerstone approach of the forthcoming tumour management
Vandetanib has antineoplastic activity in anaplastic thyroid cancer, in vitro and in vivo
The antitumor activity of vandetanib [a multiple signal transduction inhibitor including the RET tyrosine kinase, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor (VEGFR), ERK and with antiangiogenic activity], in primary anaplastic thyroid cancer (ATC) cells, in the human cell line 8305C [undifferentiated thyroid cancer (TC)] and in an ATC-cell line (AF), was investigated in the present study. Vandetanib (1 and 100 nM; 1, 10, 25 and 50 μM) was tested by WST-1, apoptosis, migration and invasion assays: in primary ATC cells, in the 8305C continuous cell line, and in AF cells; and in 8305C cells in CD nu/nu mice. Vandetanib significantly reduced ATC cell proliferation (P<0.01, ANOVA), induced apoptosis dose-dependently (P<0.001, ANOVA), and inhibited migration (P<0.01) and invasion (P<0.001). Furthermore, vandetanib inhibited EGFR, AKT and ERK1/2 phosphorylation and downregulated cyclin D1 in ATC cells. In 8305C and AF cells, vandetanib significantly inhibited the proliferation, inducing also apoptosis. 8305C cells were injected subcutaneously in CD nu/nu mice and tumor masses became detectable after 30 days. Vandetanib (25 mg/kg/day) significantly inhibited tumor growth and VEGF-A expression and microvessel density in 8305C tumor tissues. In conclusion, the antitumor and antiangiogenic activity of vandetanib is very auspicious in ATC, opening the way to a future clinical evaluation
Clinical, pharmacokinetic and pharmacodynamic evaluations of metronomic UFT and cyclophosphamide plus celecoxib in patients with advanced refractory gastrointestinal cancers
Aims. To evaluate UFT and cyclophosphamide (CTX) based metronomic chemotherapy plus celecoxib (CXB) for the treatment of patients with heavily pre-treated advanced gastrointestinal malignancies.
Methods. Thirty-eight patients received 500 mg/mq2 CTX i.v bolus on day 1 and, from day 2, 50 mg/day CTX p.o. plus 100 mg/twice a day UFT p.o. and 200 mg/twice a day CXB p.o. Tegafur, 5-FU, 5-FUH2, GHB and uracil pharmacokinetics were assessed. Plasma vascular endothelial growth factor (VEGF), soluble VE-cadherin (sVE-C) and thrombospondin-1 (TSP-1) levels were detected by ELISA and real-time PCR of CD133 gene expression on peripheral blood mononuclear cell was also performed.
Results Seventeen patients (45%) obtained stable disease (SD) with a median duration of 5.8 ms (range, 4.2–7.4). Median progression free survival (PFS) and overall survival (OS) were 2.7 ms (95% CI, 1.6–3.9 ms) and 7.1 ms (95% CI, 4.3–9.9 ms), respectively. No toxicities of grade >1 were observed. Pharmacokinetics of 27 patients (13/14, SD/progressive disease, PD) after the first treatment of UFT revealed that 5-FU AUC and Cmax values greater than 1.313 h x microg/ml and 0.501 microg/ml, respectively, were statistically correlated with stabilization of disease and prolonged PFS/OS. VEGF and sVE-C plasma levels were greater in the PD group when compared to SD group. CD133 expression increased only in the PD patients.
Conclusion. Metronomic UFT and CTX with CXB in heavily pre-treated gastrointestinal patients were well tolerated and associated with interesting activity. Potential predictive pharmacokinetic parameters and pharmacodynamic biomarkers have been found
Genetic interaction of P2X7 receptor and VEGFR-2 polymorphisms identifies a favorable prognostic profile in prostate cancer patients
VEGFR-2 and P2X7 receptor (P2X7R) have been described to stimulate the angiogenesis and inflammatory processes of prostate cancer. The present study has been performed to investigate the genetic interactions among VEGFR-2 and P2X7R SNPs and their correlation with overall survival (OS) in a population of metastatic prostate cancer patients. Analyses were performed on germline DNA obtained from blood samples and SNPs were investigated by real-time PCR technique. The survival dimensionality reduction (SDR) methodology was applied to investigate the genetic interaction between SNPs. One hundred patients were enrolled. The SDR software provided two genetic interaction profiles consisting of the combination between specific VEGFR-2 (rs2071559, rs11133360) and P2X7R (rs3751143, rs208294) genotypes. The median OS was 126 months (95% CI, 115.94-152.96) and 65.65 months (95% CI, 52.95-76.53) for the favorable and the unfavorable genetic profile, respectively (p < 0.0001). The genetic statistical interaction between VEGFR-2 (rs2071559, rs11133360) and P2X7R (rs3751143, rs208294) genotypes may identify a population of prostate cancer patients with a better prognosis
1,2-Benzisothiazole Derivatives Bearing 4-, 5-, or 6-Alkyl/arylcarboxamide Moieties Inhibit Carbonic Anhydrase Isoform IX (CAIX) and Cell Proliferation under Hypoxic Conditions
Three novel series of 1,2-benzisothiazole derivatives have been developed as inhibitors of carbonic anhydrase isoform IX. Compounds 5c and 5j, tested in vitro on the human colon cell line HT-29, blocked the growth of cells cultured under chemically induced hypoxic conditions, displaying a specific activity against cancer cells characterized by CAIX up-regulation. Moreover, a synergistic activity of 5c with SN-38 (the active metabolite of irinotecan) and 5-fluorouracil on cell proliferation under hypoxic conditions was demonstrated
- …