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Dual Kit/Aur Inhibitors as 
Chemosensitizing Agents for the 
Treatment of Melanoma: Design, 
Synthesis, Docking Studies and 
Functional Investigation
Luca Quattrini1, Vito Coviello1, Stefania Sartini   1, Teresa Di Desidero2, Paola Orlandi2, 
 Yi-Yu Ke3, Kai-Lun Liu3, Hsing-Pang Hsieh3, Guido Bocci2 & Concettina La Motta1

Melanoma is the most serious form of skin cancer but its medication is still far from being safe and 
thoroughly effective. The search of novel therapeutic approaches represents therefore a health 
emergency to push through eagerly. In this study, we describe a novel class of dual c-Kit/Aur inhibitors, 
characterized by a 1,2,4-triazole core and developed by a structure-based optimization of a previously 
developed hit, and report the evidence of their significance as drug candidates for the treatment of 
melanoma. Compound 6a, merging the best inhibitory profile against the target kinases, showed 
anti-proliferative efficacy against the human melanoma cell lines A2058, expressing the BRAF V600D 
mutation, and WM266-4, expressing BRAF V600E. Significantly, it displayed also a highly synergistic 
profile when tested in combination with vemurafenib, thus proving its efficacy not only per se but 
even in a combination therapy, which is nowadays acknowledged as the cornerstone approach of the 
forthcoming tumour management.

Melanoma is the most serious form of skin cancer, as it quickly metastasizes and poorly responds to conventional 
oncology treatments such as chemotherapy and radiation therapy1. Although accounting for a small percentage 
of all skin malignancies, its incidence and mortality rate are increasing faster than that of any other type of can-
cer. According to the American Cancer Society forecasts2, in 2018 there will be more than 91.000 novel cases of 
melanoma diagnosed in USA, with 2 to 3 cases occurring in men and more than 9.000 deaths in both sexes, and 
similar trends will be observed in both European and Eastern world3.

While early stage melanomas may be handled successfully with surgical resection, advanced and metastatic 
malignant diseases are inevitably characterized by poor prognosis and still represent an important health con-
cern4. They have been treated for decades with immunotherapeutic agents like interferon alfa, cytokines and 
monoclonal antibodies, but both the marginal efficacy and the significant toxicity of these compounds have gen-
erally limited the median survival rate of the treated patients to six months5. Recently, an in-depth understanding 
of cell signalling pathways underlying melanoma initiation and progression opened up novel opportunities for 
targeted therapies, thus allowing to add innovative compounds to the pharmacological armamentarium for the 
treatment of this disease6,7.

Up to four main types of melanoma may be described, differentiated by anatomic sites and clinical features, as 
well as by distinctive genomic alterations including amplification, deletion and mutation of selected genes encod-
ing for particular protein kinases. Actually, most of the more common melanomas arising from non-chronic 
sun-damaged skin are characterized by mutations in the gene encoding the serine-threonine kinase BRAF, the 
most frequent one being V600E, which stimulate tumour proliferation and survival via constitutive ERK signal-
ling mediated by MEK8. Moreover, up to 30% of the same malignancies show gain-of-function mutation in the 
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NRAS gene9, while PI3K mutations occur in up to 3% of metastatic melanomas10. On the contrary, melanomas 
affecting mucosal, acral and sun-damaged skin are characterized by mutations in the c-Kit gene, mainly at the 
11, 13, 17 and 18 exons, or amplification of the c-Kit gene copy number. Eventually co-existing with oncogenic 
mutations affecting BRAF and NRAS11, c-Kit aberrations confer a constitutive tyrosine phosphorylation of the 
encoded receptor and a downstream activation of both the MAPK and the PI3K signalling cascade12,13.

Protein kinases represent therefore a sound target for the molecular therapy of people affected by melano-
mas and their inhibition is now pursued as an effective and viable therapeutic strategy14. Since 2011, four novel 
kinase inhibitors have been approved for the treatment of metastatic melanomas and malignancies that cannot 
be surgically removed. These include the pyrrolopyridine derivative vemurafenib15 (1, Chart 1-SI, Supplementary 
Information) and the thiazolylpyrimidine derivative dabrafenib16 (2, Chart 1-SI, Supplementary Information), 
which are able to block the V600 mutated BRAF protein, and the pyridopyrimidinetrione derivative trametinib17 
(3, Chart 1-SI, Supplemental Information) and the azetidinmetanone derivative cobimetinib18 (4, Chart 1-SI, 
Supplemental Information), developed to inhibit the BRAF downstream kinase MEK. Although inducing a rapid 
and widespread response, which actually revolutionized the prognosis of patients increasing their median overall 
survival to two years or more, the use of these compounds is not without controversy and serious concern. In 
particular, their administration is limited to patients carrying the V600 BRAF mutation, thus malignancies char-
acterized by a deregulation of different proteins, like c-Kit, still cannot benefit from a target therapy. Moreover, 
their use is accompanied by significant side effects, which are often challenging to manage and force to treatment 
interruption. In particular, the paradoxical activation of the MAPK pathway resulting from BRAF and MEK 
inhibition may accelerate pre-existing cancerous lesions19,20. Most importantly, these compounds trigger resist-
ance mechanisms in the tumour cells, due to either re-activation of the targeted pathway or de novo activation of 
alternative signalling routes, thus making patients no longer responsive to both the initial therapy and additional 
treatment options21–23.

Therefore, even if the targeted therapy has definitively entered the clinical practice for the treatment of malig-
nant melanoma, there is still a need to identify safe and thoroughly effective drugs. A step forward could be 
represented by the development of suitably tailored multi-effective kinase inhibitors, able to target at once key 
deregulated proteins affecting melanoma growth and survival. Besides increasing the therapeutic efficacy, these 
compounds should help, in principle, to reduce the emergence of resistance, above all when administered in com-
bination with additional kinase inhibitors in customized cocktails of drugs24,25.

Among the different heterocyclic scaffolds exploited to build up novel anti-tumour protein kinase inhibitors, 
the 1H-1,2,4-triazole ring is getting more and more popular among medicinal chemists, who exploit this core 
increasingly for the design of novel compounds targeting the ATP-binding site of the proteins. Indeed, thanks to 
the 1,2-di-nitrogen substitution pattern, possibly assisted by the presence of further heteroatoms bound to posi-
tions 3 and 5, this nucleus is able to hook the kinase hinge region through H-bond interactions, thus allowing to 
obtain effective inhibitors. It is no coincidence that receptor-based virtual screening campaigns identify increas-
ingly novel hits bearing the 1H-1,2,4-triazole ring as the main core, even when the studies are pursued against 
different kinases26–28. Actually, given the highly conserved structure of the hinge region across the wide kinase 
superfamily, this structural residue proves to bind both tyrosine and serine/threonine kinases, thus turning out 
to be highly handy for the development of multi-target inhibitors. A clear example of the drug design versatility 
of this nucleus is represented by compound DP01920, 5-(4-chlorophenyl)-3-((4-chlorophenylthio)methyl)-1H-
1,2,4-triazole (5, Chart 1-SI, Supplemental Information), found out through a receptor-based virtual screening 
campaign aimed at obtaining novel inhibitors of RET, a tyrosine kinase receptor whose gain of function is causally 
linked to the development of different types of thyroid cancer28.

Investigated against a panel of tyrosine and serine/threonine kinases, DP01920 revealed a multi-effective pro-
file, proving to inhibit also the tyrosine kinase receptor c-Kit, which plays a key role in melanoma initiation and 
progression, and the serine/threonine kinase AurA, which is a master of cell division in coordination with the 
parent AurB and AurC (Fig. 1). Although displayed at concentrations in the 50–100 micromolar ranges, these 
ancillary activities made DP01920 the ideal hit compound to develop for the obtainment of multi-effective drug 
candidates for the treatment of melanoma. Accordingly, exploiting preliminary docking studies against the tar-
get kinases, we rationally optimized the 1,2,4-triazole derivative to obtain novel and effective dual c-Kit/Aur 
inhibitors.

Here we present a series of 1,2,4-triazole derivatives resulting from DP01920, whose aryl fragment in position 
5 of the nucleus was suitably expanded through the insertion of phenyl-urea residues. The functional efficacy of 
the novel compounds were tested against the target proteins and melanoma cell lines, to prove the soundness 
of our optimization hypothesis. Moreover, seeking for a chemosensitizing agent to exploit for a combination 
therapy, which should enhance the efficacy of a standard drug reducing its side effects, the synergistic activity of 
the most effective 1,2,4-triazole derivative with the commercial agent vemurafenib was investigated as well, on 
melanoma cell lines proliferation.

Results and Discussion
Structural optimization of DP01920.  The rational optimization campaign of DP01920 started with 
an in-depth docking investigation of the compound into the ATP binding sites of the target protein kinases. 
Regarding c-Kit, Discovery Studio 2016//LigandFit program29 lodged DP01920 into the X-ray structure of the 
protein (PDB code: 3G0E30) so that the 1,2-di-nitrogen fragment of the triazole core can form a strong hinge bind-
ing with Cys673. Moreover, the 5-pheny fragment fits into the deep end of the site setting additional hydrophobic 
interactions with Leu595, Val603, Ala621, Lys623, Val654, Tyr672, Tyr675, Gly676, Met757, Leu799, and Cys809, 
thus strengthening the binding of DP01920 with the backbone of the protein (Fig. 2a). Similar outcomes were 
obtained docking the compound into the X-ray structure of AurA (PDB code: 5EW931). Indeed, also in this case, 
the 1,2-di-nitrogen fragment of the core turned out to be a key residue, as it gears the molecule into the ATP site 
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of the protein H-bonding Ala213 (Fig. 3a). In doing so, it casts the 5-phenyl ring toward the aromatic Trp277, thus 
allowing a pi-pi stacking interaction which makes the DP01920 linking with the AurA binding site more effective. 
The obtained binding poses into the active sites of both c-Kit and AurA offer interesting clues for the rational 
optimization of the hit. In particular, they lead to speculate that the insertion of suitable substituents on the pen-
dant phenyl rings may help to fill in further and more specifically the binding pockets of the two proteins, which 
turn out to be only partially occupied by the relatively small DP01920. To this end, the insertion of the aryl-urea 
fragment, often exploited for the development of multi-kinase inhibitors like sorafenib32, regorafenib33, AT-928334 
and many others, could come in very handy. Actually, it merges an aromatic portion, able to face the lipophilic 
aminoacid residues surrounding the site, with nitrogen and oxygen atoms, which can take part in H-bonds with 
the backbone of the proteins both as donor and acceptor fragments. Thus, inserting this structural residue on the 
5-phenyl-thiometyl portion of the DP01920 hit we obtained the 1-phenyl-3-(4-(((3-phenyl-1H-1,2,4-triazol-5-yl)

Figure 1.  Kinase Inhibitory Data of 1-(Substituted)phenyl-3-(4-(((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)thio)
phenyl)urea Derivatives, 6a–i. Data are expressed as percentage of kinase inhibition at 10 μM test compound, 
obtained as mean of at least three determinations. Standard error of the mean (SEM) is ≤10%. Compound 
6e displayed no inhibitory activity when tested against both AurA and AurB. Compound 6g displayed no 
inhibitory activity when tested against AurA. Compound 6h displayed no inhibitory activity when tested 
against AurB. The reference compound, DP01920, was not tested against both AurB and AurC.

Figure 2.  Binding pose of DP01920 (1a) and 1,2,4-triazole derivative 6a (1b) into the active site of c-Kit. The 
protein is represented as grey ribbons and light blue sticks, H-bonds are represented as yellow dashed lines.
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methyl)thio)phenyl)urea derivative 6a (Chart 1-SI; Supplemental Information) as the representative compound 
of a novel dual c-Kit/Aur inhibitor. A preliminary docking study of 6a into the ATP binding site of c-Kit was 
then undertaken, to verify the soundness of our design hypothesis. As clearly showed in Fig. 2b, the 1,2-N(H)-N 
fragment of the core is still engaged in hydrogen bonding with the backbone, hooking Glu671 and Cys673 resi-
dues, while the extended urea group, chosen to optimize the DP01920 hit, forms a strong hydrogen bonding with 
Asp677. Therefore, this residue plays in principle a key role in bonding the active site of the protein suggesting 
that the compound has the potential to inhibit efficiently the target kinase. Similar results were also obtained 
docking the 6a lead into the active site of AurA (Fig. 3b). The heterocyclic core of the compound maintains a 
fruitful H-bond interaction with Ala213, as in the case of DP01920, while the added aryl-ureic fragment H-bonds 
both Ala273 and Asn261, thus proving to be actively involved in the interaction with the protein. The physico-
chemical properties and the druglikeness profile of 6a, including PAINS estimation, were then evaluated in silico, 
exploiting the SwissADME facility35, and the obtained promising results (Table 1-SI, Supplemental Information) 
finally allowed to account this compound as a novel lead to invest in. Different substituents were then placed on 
the distal phenyl ring of the aryl-ureic fragment, showing either an electron withdrawing or an electron donating 
profile, in order to investigate the structure-activity relationships of these novel class of dual-kinase inhibitors.

Synthesis of novel 1,2,4-Triazole derivatives.  The synthesis of the target inhibitors 6a–i was performed 
as depicted in Fig. 1-SI (Supplemental Information). Reaction of either 4- or 3-aminobenzenethiol 7a,b with ethyl 
chloroacetate and K2CO2 gave the corresponding ethyl esters 8a,b, which were converted into acetohydrazides 
9a,b by treatment with hydrazine in methanol solution. Cyclization of 9a,b to the 1,2,4-triazole derivatives 10a–d 
was accomplished by reaction with the suitable benzonitrile, in the presence of K2CO3. The key 1,2,4-triazole 
intermediates afforded the desired ureic inhibitors 6a-i by reaction with substituted phenylisocyanates in THF 
solution.

Functional evaluation of novel 1,2,4-Triazole derivatives.  The novel synthesized compounds were 
tested for their inhibitory properties against the target proteins, c-Kit and AurA, as well as the parent mitotic AurB 
and C, as they all have control over cell proliferation. As reported in Fig. 1, listing functional activities expressed 
as percentage inhibition at 10 μM, all the novel compounds showed a remarkable enhancement in inhibitory effi-
cacy against the main targets, c-Kit and AurA, when compared to the reference hit, DP01920, thus corroborating 
the functional significance of the aryl-urea fragment proposed by our design hypothesis. Regarding the tyrosine 
kinase c-Kit, the activity of the novel unsubstituted aryl-ureic lead 6a was increased by the concurrent insertion 
of an electron-withdrawing chloro atom on the 5-phenyl ring and a 2,5-dimethoxy substitution pattern on the 
distal phenyl ring, as in the case of 6f. On the contrary, the presence of any other different combination of both 
electron-donating and electron-withdrawing atoms on the core gave rise to a slight reduction of its inhibitory 
potency. Significantly, moving the aryl-ureic fragment on the 5-phenyl-thiomethyl portion from position para to 
position meta, thus bending the geometry of the molecular skeleton, gave rise to an excellent inhibitory profile 
and derivative 6i, characterized by a 4-fluoro substituent on the distal phenyl ring, turned out to be the most effec-
tive compound of the whole series. In the case of AurA, the lead 6a proved to be the most active of the synthesized 
series, and major results were also obtained against the parent AurB. The compound gets settled nicely into the 
kinase domain of the two proteins but, at the same time, it leaves little room for structural modifications. Actually, 
the insertion of any type of substituent, regardless of its steric and electronic contribution, determined a slight 
to significant reduction of its inhibitory efficacy. A similar functional trend was observed testing the compounds 
against AurC. Indeed, also in this case, the unsubstituted lead, 6a, tuned out to be the most effective of the whole 

Figure 3.  Binding pose of DP01920 (2a) and 1,2,4-triazole derivative 6a (2b) into the active site of AurA. The 
protein is represented as grey ribbons and light blue sticks, H-bonds are represented as yellow dashed lines.
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series and the increase of structural complexity through the gradual addition of substituents at one end, as in 6b,c, 
and at both ends of the molecule, as in 6d–i, lead to a progressive decrease of activity.

The observed functional data were rationalised through molecular modelling analyses. Regarding c-Kit, dock-
ing studies of the most effective compounds, 6a,f,i, resulted in pretty similar poses, as they are all kept into the 
active site of the protein thanks to the strong H-bond interactions with Glu671, Cys673, and Tyr672 (Fig. 2-SI, 
Supplementary Information).

Regarding AurA, none of the structural changes made to the unsubstituted 6a turned out to be satisfactory. 
Actually, the chosen substitutions induced steric clashes with the Aurora binding pocket influencing the com-
pounds’ hinge binding, and this is why they all showed lower inhibitory efficacy against the protein. In the case of 
AurB, the docking study of compound 6a into the X-ray structure of the protein (PDB code: 4AF336) highlights 
the tight bond between the urea fragment and the Lys106, Glu204, Asn205, and Ala217 residues. Moreover, the 
flanking aromatic rings have strong hydrophobic interaction with Phe219 and Gly220 (Fig. 4), and the resulting 
network of contact, not found in the AurA binding pose (Fig. 3-SI, Supplemental Information), well justifies the 
almost double difference in inhibitory efficacy of the compound between the two protein isoforms.

Compound 6a, merging the best inhibitory profile against the target c-Kit/AurB kinases, was tested on the 
human A2058 (American Type Culture Collection, Manassas, USA) and WM266-4 (European Collection of 
Authenticated Cell Cultures, Salisbury, UK) cell lines, chosen as representative of BRAF-mutated melanoma cell 
lines, to investigate its anti-proliferative efficacy. In particular, the WM266-4 cell line harbors the BRAF V600E 
mutation, whereas the A2058 cells has the BRAF V600D one. Vemurafenib, the BRAF V600E inhibitor cur-
rently used for the treatment of inoperable, metastatic melanoma, was used as the reference compound. After 
72 hours of exposure, the test compound 6a proved to block cells growth in a dose-dependent manner, showing 
comparable IC50 values for both the lines: 9.65 μM (Fig. 5a) and 11.41 μM (Fig. 5b) for WM266-4 and A2058, 

Figure 4.  Binding pose of derivative 6a into the active site of AurB. The protein is represented as grey ribbons 
and light blue sticks, H-bonds are represented as yellow dashed lines.

Figure 5.  Antiproliferative activity of 1,2,4-Triazole 6a on BRAF V600E WM-266-4 (5a) and BRAF V600D 
A-2058 (5b) cell lines.
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respectively. Moreover, as combination therapy with drugs given simultaneously is becoming by far the most 
effective approach to treat clinically challenging diseases, including melanoma37, 6a was tested in combination 
with vemurafenib to investigate the efficacy of a combination strategy targeting malignancies characterized by a 
deregulation of different kinases. The level of possible interaction between the two kinase inhibitors, synergistic, 
additive or antagonist in nature, was determined by the method of Chou-Talaly38 and quantitated through the 
combination index (CI), calculated exploiting the following multiple drug-effect Eq. (1)

= +CI [(D) /(Dx) ] [(D) /(Dx) ] (1)1 1 2 2

and referred to as synergism, additive effect and antagonism when CI < 1, CI = 1 and CI > 1, respectively. As an 
example, at the 95% inhibition level, (Dx)1 and (Dx)2 are the concentrations of 6a and vemurafenib, respectively, 
that induce a 95% inhibition of cell proliferation; (D)1 and (D)2 are the concentrations of compound 6a and 
vemurafenib in combination that also inhibit cell proliferation by 95% (isoeffective as compared with the single 
drugs alone).

As summarized in Table 1, the simultaneous exposure of WM-266-4 cells to different concentrations of 6a 
and vemurafenib for 72 h showed a synergism for affected fraction (Fa) of cells higher than 50% (CI < 1, Fig. 6a), 
and, in particular, for affected fraction ranging from 75 to 95%. A highly synergistic profile was also found for 
simultaneous combination 6a and vemurafenib for 72 h in A2058 cell line (CI < 1, Fig. 6b), for all the affected 
fraction of cells.

The Dose Reduction Index (DRI) was calculated as well, to assess the theoretical magnitude of concentration 
reduction allowed for the two drugs when given in synergistic combination in vitro to achieve the same effect as 
that obtained with the concentration of each single agent. DRI was calculated by the following Eq. (2):

=(DRI) (Dx)/(D) (2)

Indeed, in the cases of 6a or vemurafenib, it could be possible to reduce the concentration of the drug in vitro 
more than 300-fold or 20-fold (Table 1), respectively, when the drugs are combined to obtain the same 95% level 
of cytotoxic effects in A-2058 cells, whereas in WM266-4 cells the possible dose reduction is markedly lower for 
6a (i.e. 150-fold) and vemurafenib (1.4-fold). Of note, synergism and related reductions of drug concentrations 
are extremely important for high levels of cell proliferation inhibition (e.g. >75%) to obtain a clinical advantage 
such as the reduction of tumor mass or the control of neoplastic disease.

The decision to test the effects of the compound 6a on WM266-4 and A-2058 cell lines was due to their dif-
ferent BRAF mutational status. Indeed, the antiproliferative activity of the 6a was independent from the BRAF 

Affected Cell 
Fraction (%)

Combination Index (CI)
6a + vemurafenib

Dose Reduction Index (DRI)
6a + vemurafenib

A2058 WM266-4

A2058 WM266-4

6a vemurafenib 6a vemurafenib

75 0.048 0.897 494.1 21.8 374.9 1.1

85 0.047 0.827 429.0 22.2 272.1 1.2

95 0.046 0.710 327.9 22.9 147.9 1.4

Table 1.  Synergistic activity of 6a and vemurafenib association expressed as both combination index (CI) and 
dose reduction index (DRI) values for each drug at 75%, 85% and 95% inhibition of A2058 and WM266-4 cell 
proliferation.

Figure 6.  Synergistic activity of 1,2,4-Triazole 6a and vemurafenib association on WM-266-4 (6a) and on 
A-2058 (6b) cell lines, expressed as combination index (CI) values. The red line represents the additive effect. 
CI < 1 values represent synergism, CI = 1 additive, and CI > 1 antagonistic activity between the two drugs.
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mutational status of the melanoma cell lines, as witnessed by the superimposable IC50s. Furthermore, the syner-
gistic and chemosensitizing effect was obtained mainly in the BRAF V600D cell line, that responded less to the 
treatment with vemurafenib alone, thus suggesting the possible use of this combination in future clinical studies 
enrolling patients with this rare mutation but less therapeutic options. However, the 6a effects should be tested 
on other BRAF V600E melanoma cell lines to confirm the cell proliferation inhibition and the synergism with the 
target therapy vemurafenib.

Interestingly, compound 6a showed also a significant inhibition of c-Kit phosphorylation on both cell lines at 
concentrations that significantly inhibited ≥50% of proliferation of melanoma cells, as outlined by Fig. 7. After 
exposure to 6a concentrations, the quantity of the phosphorylated form of AurB in both cell lines (Fig. 7) was 
weakly reduced after 72 h, but not reached a statistical significance if compared to the vehicle-treated samples.

Concluding Remarks
In this work we described a novel class of 1,2,4-triazole derivatives possessing a peculiar dual c-Kit/AurB inhibi-
tory profile. Obtained from a previously described hit28 by means of a structural improvement, pursued through 
a rational approach facilitated by preliminary docking studies, the novel compounds are able to target two key 
protein kinases accountable for both pathogenesis and progression of melanoma. Actually, it is a fact that malig-
nancies arising particularly from acral, mucosal, and chronically sun-damaged sites harbor c-Kit alterations11–13, 
and it has recently become clear that both expression and activity of the serine-threonine AurB is remarkably 
increased during both BRAF wild type and V600 mutated melanoma progression39,40.

Among the synthesized compounds, derivative 6a, 1-phenyl-3-(4-(((3-phenyl-1H-1,2,4-triazol-5-yl)methyl)
thio)phenyl)urea, emerged as a promising lead. Besides showing the most efficient combination of inhibitory 
activity against the target kinases, 6a displayed anti-proliferative efficacy when tested against human A2058 and 
WM266-4 melanoma cell lines. Significantly, it also exhibited highly synergistic properties when administered to 
the same cell lines as a simultaneous combination with the known inhibitor vemurafenib. Therefore, 6a represents 
an original prototype of kinase inhibitor whose functional profile may provide, in principle, a novel and viable 
chance to treat melanoma by means of a targeted and sinergistic approach. Clearly, thorough investigations in 
animal models of melanoma are now necessary, to both prove the effectiveness of 6a as a chemosensitizing agent 
and verify the safe of the proposed combination therapy, as the concomitant administration of different targeted 
drugs may be not free from adverse side effects.

Methods
Chemistry.  Melting points were determined using a Reichert Köfler hot-stage apparatus and are uncor-
rected. Routine 1H-NMR and 13C spectra were recorded in DMSO-d6 on a Bruker 400 spectrometer operating 
at 400 MHz. Evaporation was performed in vacuo (rotary evaporator). Analytical TLC analyses were carried out 
on Merck 0.2 mm precoated silica gel aluminium sheets (60 F-254). Purity of the target inhibitors, 6a–g, was 
determined by HPLC analysis, using a Merck Hitachi D-7000 liquid chromatograph (UV detection at 242 nm) 
and a Discovery C18 column (250 mm × 4.6 mm, 5 μm, Supelco), with a gradient of 40% water and 60% methanol 
and a flow rate of 1.4 mL/min. All the compounds showed percent purity values ≥95%. 4-Aminobenzenethiol, 
3-aminobenzenethiol, benzonitrile, 4-chlorobenzonitrile, 4-bromobenzonitrile and all the suitably substituted 
phenylisocyanates, used to obtain the target inhibitors, were from Sigma-Aldrich and Fluka.

Figure 7.  Inhibition of c-Kit and AurB phosphorylation by compound 6a in WM-266-4 and A-2058 cells after 
72 h of treatment. The data are expressed as the ratio of phosphorylated c-Kit or AurB/total c-Kit or AurB. 
Columns and bars, mean values ± SD, respectively. *P < 0.05 vs. vehicle-treated controls.
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Synthesis of Ethyl 2-((4-aminophenyl)thio)acetate and Ethyl 2-((3-aminophenyl)thio)ace-
tate, 8a,b.  A solution of the suitable aminobenzenethiol (1.00 mmol), chloroethylacetate (1.00 mmol), and 
K2CO3 in DMF was left under stirring at room temperature until the disappearance of the starting material (TLC 
analysis). Once reaction was complete, the solvent was removed in vacuo and the resulting residue was diluted 
with water and extracted with running portions of AcOEt. The combined organic portions were then dried over 
sodium sulfate and the solvent removed in vacuo. The crude product was purified by flash chromatography (elut-
ing mixture AcOEt/Hexane 3/7), and characterized through physical and spectral data (Table 2-SI, Supplemental 
Information).

Synthesis of 2-((4-Aminophenyl)thio)acetohydrazide and 2-((3-Aminophenyl)thio)acetohy-
drazide, 9a,b.  The ester derivative 8a,b (1.00 mmol) was allowed to react with hydrazine (3.00 mmol) in 
EtOH solution, at T = 100 °C, until the disappearance of the starting material (TLC analysis). The solvent was 
then removed in vacuo and the solid obtained was purified by recrystallization from EtOH, then characterized 
through physical and spectral data (Table 2-SI, Supplemental Information).

General procedure for the synthesis of 3- and 4-(((5-(Substituted-phenyl)-1H-1,2,4-triazol-3-yl)
methyl)thio)aniline, 10a–d.  A mixture of the thioacetohydrazide 9a,b (1.00 mmol), the suitably substi-
tuted nitrile (3.00 mmol), and K2CO3 (0.5 mmol) in n-BuOH (2 mL) was heated under stirring at 150 °C in a 
sealed vial until the disappearance of the starting material (TLC analysis). The solvent was then removed in vacuo 
and the residue obtained was diluted with water and extracted with AcOEt. The combined organic extracts were 
dried over sodium sulfate and the solvent removed in vacuo. The crude product was finally purified by flash chro-
matography (eluting mixture AcOEt/Hexane 5/5), then recrystallized from suitable solvent and characterized 
through physical and spectral data (Table 2-SI, Supplemental Information).

General Procedure for the Synthesis of 1-Phenyl-3-(3-(((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)
thio)phenyl)urea, 6a–g.  A solution of the 1,2,4-triazole derivative 10a–d (1.00 mmol) and the appropriate 
phenyl isocyanate (1.00 mmol) in THF was left under stirring at room temperature until the disappearance of 
the starting material (TLC analysis). Once the reaction was complete, the solvent was removed in vacuo and the 
residue obtained was purified by recrystallization from the suitable solvent and characterized through physical 
and spectral data (Table 3-SI, Supplemental Information).

Biology
Materials and Methods.  Cell culture media EMEM and DMEM, fetal bovine serum (FBS), L-glutamine, 
and antibiotics were from Sigma-Aldrich St. Louis, MO, USA). Vemurafenib was purchased from Selleckchem 
(Munich, Germany). Human recombinant protein kinases and Protein kinase assay kits were from ThermoFisher 
Scientific (MA, US). Plastics were supplied by Sarstedt (Verona, Italy).

Protein kinases inhibitory assay.  Inhibitory assays were performed in accordance with a previously 
reported procedure, standardized for RET and VEGFR228,41. Test compounds were dissolved in 100% DMSO and 
diluted to the appropriate concentrations with the reaction buffer, provided by the kit. The final concentration 
of DMSO in assay solutions never exceeded 1%, and proved to have no effects on protein activity. The inhibitory 
effect of the novel compounds was routinely estimated at 10 μM concentration.

Proliferation assay.  Test compounds 6a and vemurafenib were dissolved in a stock solution of 10 mM in 
100% dimethylsulfoxide (DMSO) for in vitro studies. DMSO concentration in the control’s media was the same 
used to make up the highest concentration of test compounds in growth media for the same experiment. In 
vitro chemosensitivity was tested on melanoma WM266-4 and A2058 cell lines. Cells were grown in EMEM and 
DMEM media, respectively, plated in sterile 24-well plastic plates and treated for 72 h (using 103 cells/well in 1 mL 
of medium) with added 6a (range of 1–100 μM), or vemurafenib (0.0001–100 μM) alone. The synergistic effect 
between 6a and vemurafenib was calculated with the method of Chou-Talaly38 based on the multiple drug-effect 
equation and quantitated by the combination index (CI) and the dose reduction index (DRI), where CI < 1 and 
DRI > 1 indicate synergism. At the end of the experiment, cells were harvested with trypsin/EDTA, and viable 
cells were quantified using the automatic cell counter ADAM MC Digital B (Twin Helix, Milano, Italy). The data 
are presented as the percentage of vehicle-treated cells. The concentration of drugs that decreased cell count by 
50% (IC50) compared with controls was calculated by nonlinear fitting of experimental data. All experiments were 
repeated independently three times with at least nine samples for each concentration.

c-Kit and AurB ELISA assay.  WM266-4 and A2058 cells (5 × 104 cells/well) were treated for 72 h with 
compound 6a (10 μM) or with vehicle alone. To measure phospho c-Kit and phospho AurB, at the end of the 
experiment, the cells were harvested and immediately frozen with liquid nitrogen. Cells were then lysed and the 
total protein was measured. In each sample, an equal amount of proteins was then assayed for human c-Kit and 
AurB phosporylation by the Human Phospho-CD117/c-kit ELISA Kit (Assaysolution; Woburn, MA, USA) and 
the AurB (Phospho-Thr232) ELISA Kit (Aviva System Biology; San Diego, CA, USA) and normalized by total 
protein c-Kit and AurB concentration measured by c-Kit and AurB ELISA kits, respectively. The optical density 
was determined using the microplate reader Multiskan Spectrum set to 450 nm. All experiments were repeated, 
independently, six times with at least nine samples for each concentration. The data were expressed as the ratio of 
phosphorylated c-Kit or AurB/total c-Kit or AurB.

Molecular modeling study.  The c-Kit (PDB code: 3G0E30), Aurora-A (PDB code: 5EW931), and Aurora-B 
structures (PDB ID: 4AF336) were used for the docking study. The docking analysis was conducted using the 
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Discovery Studio 2017//LigandFit program with the CHARMm force field42. The number of docking poses was 
set as 100 with default parameters. The PDB models selection and validation, as well as the choice of the best 
conformations were determined as previously described, according to the complex binding structure obtained 
with the same proteins43–46.

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information Files).
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