21 research outputs found

    Long-term outcome of COVID-19 patients treated with helmet noninvasive ventilation vs. high-flow nasal oxygen: a randomized trial

    Get PDF
    Background: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. Methods: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. Results: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47–77] of predicted vs. 80% [71–88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53–70] vs. 80 [70–83], p = 0.01). Conclusions: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 202

    Oestrogenic repression of human coagulation factor VII expression mediated through an oestrogen response element sequence motif in the promoter region

    No full text
    Reporter gene analysis of two regions of the human factor VII (FVII) gene promoter (residues –658 to –1 and –348 to –1, where +1 is the start site of translation) in the mammalian liver-derived cell line HepG2 showed reduced transcriptional activity in the presence of oestrogenic factors. This effect was independent of promoter polymorphic haplotype. Similar analysis using a smaller region of the promoter spanning residues –187 to –1 failed to show any evidence of oestrogenic suppression. Electrophoretic mobility shift assays and supershift assays using recombinant oestrogen receptor α and anti-oestrogen receptor antibody localized the sequence motif to which oestrogen receptor was binding to residues –225 to –212 of the FVII promoter. The lack of oestrogenic suppression in a reporter gene construct spanning residues –658 to –1 modified to abolish oestrogen receptor binding at this site, confirmed the functional significance of this motif. Although superficially similar to the classical oestrogen response element (ORE), comprising two half sites separated by three spacer nucleotides, the FVII ORE represents an alternative type of ORE in which the two half sites are separated by just two spacer nucleotides. EMSAs indicated that increasing spacer nucleotide number from two to three in the FVII ORE, or decreasing it from three to two in a consensus ORE sequence motif, had a small effect on the binding affinity for oestrogen receptor. These data correlate with and provide a plausible mechanism for the inverse relationship between FVII and oestradiol levels observed during the menstrual cycle

    2-Arylpropionic CXC chemokine receptor 1 (CXCR1) ligands as novel noncompetitive CXCL8 inhibitors

    No full text
    The CXC chemokine CXCL8/IL-8 plays a major role in the activation and recruitment of polymorphonuclear (PMN) cells at inflammatory sites. CXCL8 activates PMNs by binding the seven-transmembrane (7-TM) G-protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2). (R)-Ketoprofen (1) was previously reported to be a potent and specific noncompetitive inhibitor of CXCL8-induced human PMNS chemotaxis. We report here molecular modeling studies showing a putative interaction site of 1 in the TM region of CXCR1. The binding model was confirmed by alanine scanning mutagenesis and photoaffinity labeling experiments. The molecular model driven medicinal chemistry optimization of 1 led to a new class of potent and specific inhibitors of CXCL8 biological activity. Among these, repertaxin (13) was selected as a clinical candidate drug for prevention of post-ischemia reperfusion injury

    Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2

    No full text
    Repertaxin is a new non-competitive allosteric blocker of interleukin-8 (CXCL8/IL-8) receptors (CXCR1/R2), which by locking CXCR1/R2 in an inactive conformation prevents receptor signaling and human polymorphonuclear leukocyte (PMN) chemotaxis. Given the unique mode of action of repertaxin it was important to examine the ability of repertaxin to inhibit a wide range of biological activities induced by CXCL8 in human leukocytes. Our results show that repertaxin potently and selectively blocked PMN adhesion to fibrinogen and CD11b up-regulation induced by CXCL8. Reduction of CXCL8-mediated PMN adhesion by repertaxin was paralleled by inhibition of PMN activation including secondary and tertiary granule release and pro-inflammatory cytokine production, whereas PMN phagocytosis of Escherichia coli bacteria was unaffected. Repertaxin also selectively blocked CXCL8-induced T lymphocyte and natural killer (NK) cell migration. These data suggest that repertaxin is a potent and specific inhibitor of a wide range of CXCL8-mediated activities related to leukocyte recruitment and functional activation in inflammatory sites. (C) 2004 Elsevier Inc. All rights reserved
    corecore