31 research outputs found

    Sex differences in arterial hypertension.

    Get PDF
    There is strong evidence that sex chromosomes and sex hormones influence blood pressure (BP) regulation, distribution of cardiovascular (CV) risk factors and co-morbidities differentially in females and males with essential arterial hypertension. The risk for CV disease increases at a lower BP level in females than in males, suggesting that sex-specific thresholds for diagnosis of hypertension may be reasonable. However, due to paucity of data, in particularly from specifically designed clinical trials, it is not yet known whether hypertension should be differently managed in females and males, including treatment goals and choice and dosages of antihypertensive drugs. Accordingly, this consensus document was conceived to provide a comprehensive overview of current knowledge on sex differences in essential hypertension including BP development over the life course, development of hypertension, pathophysiologic mechanisms regulating BP, interaction of BP with CV risk factors and co-morbidities, hypertension-mediated organ damage in the heart and the arteries, impact on incident CV disease, and differences in the effect of antihypertensive treatment. The consensus document also highlights areas where focused research is needed to advance sex-specific prevention and management of hypertension

    Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    Get PDF
    INTRODUCTION: Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. METHODS: In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. RESULTS: Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. CONCLUSION: These studies suggest that Notch signaling plays a critical role in normal human mammary development by acting on both stem cells and progenitor cells, affecting self-renewal and lineage-specific differentiation. Based on these findings we propose that abnormal Notch signaling may contribute to mammary carcinogenesis by deregulating the self-renewal of normal mammary stem cells

    Structure-Function Analysis of STRUBBELIG, an Arabidopsis Atypical Receptor-Like Kinase Involved in Tissue Morphogenesis

    Get PDF
    Tissue morphogenesis in plants requires the coordination of cellular behavior across clonally distinct histogenic layers. The underlying signaling mechanisms are presently being unraveled and are known to include the cell surface leucine-rich repeat receptor-like kinase STRUBBELIG in Arabidopsis. To understand better its mode of action an extensive structure-function analysis of STRUBBELIG was performed. The phenotypes of 20 EMS and T-DNA-induced strubbelig alleles were assessed and homology modeling was applied to rationalize their possible effects on STRUBBELIG protein structure. The analysis was complemented by phenotypic, cell biological, and pharmacological investigations of a strubbelig null allele carrying genomic rescue constructs encoding fusions between various mutated STRUBBELIG proteins and GFP. The results indicate that STRUBBELIG accepts quite some sequence variation, reveal the biological importance for the STRUBBELIG N-capping domain, and reinforce the notion that kinase activity is not essential for its function in vivo. Furthermore, individual protein domains of STRUBBELIG cannot be related to specific STRUBBELIG-dependent biological processes suggesting that process specificity is mediated by factors acting together with or downstream of STRUBBELIG. In addition, the evidence indicates that biogenesis of a functional STRUBBELIG receptor is subject to endoplasmic reticulum-mediated quality control, and that an MG132-sensitive process regulates its stability. Finally, STRUBBELIG and the receptor-like kinase gene ERECTA interact synergistically in the control of internode length. The data provide genetic and molecular insight into how STRUBBELIG regulates intercellular communication in tissue morphogenesis

    LRR-RLK family from two Citrus species: Genome-wide identification and evolutionary aspects

    Get PDF
    Background: Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. Results: We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR- 34 RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. Conclusions: This work provided the first comprehensive evolutionary analysis of the LRR-RLKs in Citrus. A large expansion of LRR-XII in Citrus genomes suggests that it might play a key role in adaptive responses in host-pathogen co-evolution, related to the perennial life cycle and domestication of the citrus crop species

    Direct observation of para-Xylylene as the decomposition product of the meta-Xylyl radical using VUV synchrotron radiation

    No full text
    Xylyl (methylbenzyl) radicals are important combustion intermediates, formed in the pyrolysis and oxidation of xylenes and other substituted aromatic fuel additives. We have used VUV synchrotron radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy techniques to identify para-xylylene as the dominant stable C8H8 product arising from thermal decomposition of the meta-xylyl radical. A complex rearrangement from a meta- to a para-substituted aromatic, supported by quantum chemical calculations, can rationalize the observed reaction products. This work provides the first experimental evidence for the pyrolysis products of the meta-xylyl radical and can explain why the decomposition of this radical is considerably slower than that of the ortho and para isomers. This study emphasizes the utility of VUV synchrotron radiation and iPEPICO spectroscopy to tackle the reaction mechanism of combustion-relevant processes
    corecore