21 research outputs found

    X-linked genodermatoses from diagnosis to tailored therapy

    Get PDF
    Background: Genodermatoses are rare heterogeneous genetic skin diseases with multiorgan involvement. They severely impair an individual's well-being and can also lead to early death. Methods: During the progress of this review, we have implemented a targeted research approach, diligently choosing the most relevant and exemplary articles within the subject matter. Our method entailed a systematic exploration of the scientific literature to ensure a compre-hensive and accurate compilation of the available sources. Results: Among genodermatoses, X-linked ones are of particular importance and should always be considered when pediatric males are affected. Regardless of other syndromic forms without prevalence of skin symptoms, X-linked genodermatoses can be classified in three main groups: keratinization defects, pigmentation defects, and inflammatory skin diseases. Typical examples are dyskeratosis congenita, keratosis follicularis spinulosa decalvans, hypohidrotic ectodermal dysplasia, chondrodysplasia punctata, hypohidrotic ectodermal dysplasia, incontinentia pigmenti, chronic granulomatous disease, CHILD syndrome and ichthyosis. In this field, genetic diagnosis of the specific disease is important, also considering that numerous clinical trials of orphan drugs and genetic therapies are being proposed for these rare genetic diseases. Conclusions: Thus, this chapter starts from clinical to molecular testing and ends with a review of all clinical trials on orphan drugs and gene therapy for genodermatoses

    In vitro cell culture of amniotic fluid keratinocytes on amniotic membrane: the ideal tissue for repairing skin ulcers

    Get PDF
    OBJECTIVE: The amniotic fluid contains a large population of stem keratinocytes demonstrating minimal immunological rejection. Recent evidence suggests that stem cells from the amniotic fluid can be employed in the field of tissue engineering. In this work we identified precursors of the epithelial cells and expanded them in vitro.MATERIALS AND METHODS: After collecting samples of amniotic fluid and separating the cells via centrifugation, we seeded a portion of these cells in selection media to analyze the proliferation of epithelial cells. The stem cells precursors of keratinocytes were identified through specific markers. The expression of these markers was evaluated by immunofluorescence and reverse transcription polymerase chain reaction (PCR).RESULTS: The stem cells demonstrated 90% confluence, after undergoing proliferation in the selection medium for 15 days. Most of these cells tested positive for the keratinocyte-specific markers, but negative for stem cell specific markers. Of note, the identity of the keratinocytes was well established even after several subcultures.CONCLUSIONS: These results suggested that it is feasible to isolate and expand differentiated cell populations in the amniotic fluid from precursor cells. Furthermore, amniotic membranes can be utilized as scaffolds to grow keratinocytes, which can be potentially exploited in areas of skin ulcer transplantation and tissue engineering interventions

    Omics sciences and precision medicine in melanoma

    Get PDF
    Background: This article provides an overview of the application of omics sciences in melanoma research. The name omics sciences refers to the large-scale analysis of biological molecules like DNA, RNA, proteins, and metabolites. Methods: In the course of this review, we have adopted a focu-sed research strategy, meticulously selecting the most pertinent and emblematic articles related to the topic. Our methodology included a systematic examination of the scientific literature to guarantee a thorough and precise synthesis of the existing sources. Results: With the advent of high-throughput technologies, omics have become an essential tool for understanding the complexity of melanoma. In this article, we discuss the different omics approaches used in melanoma research, including genomics, transcriptomics, proteomics, and metabolomics. We also highlight the major findings and insights gained from these studies, including the identification of new therapeutic targets and the development of biomarkers for diagnosis and prognosis. Finally, we discuss the challenges and future directions in omics-based melanoma research, including the integration of multiple omics data and the development of personalized medicine approaches. Conclusions: Overall, this article emphasizes the importance of omics science in advancing our understanding of melanoma and its potential for improving patient outcomes

    Study of the effects of Lemna minor extracts on human immune cell populations

    Get PDF
    OBJECTIVE: Lemna minor is a plant with a huge repertoire of secondary metabolites. The literature indicates that extracts of Lemna minor have antioxidant, antiradical, immunomodulatory and anti-inflammatory properties. The objective of the present study was to find a suitable technique to extract active compounds from this plant and verify whether these extracts have immunomodulatory activity. MATERIALS AND METHODS: We grew L. minor on a standard medium with Gamborg B5 and vitamins. We extracted compounds from the plant by maceration and decoction. The phytochemical profile of the extracts was characterized by chromatography, spectrophotometry, and spectroscopy. The extracts were tested on cultures of mononuclear cells from four human subjects. These cells were pulsed with carboxyfluorescein succinimidyl ester, grown in triplicate in standard culture medium without (control) and with increasing concentrations of Lemna extracts. Flow cytometry was used to evaluate cell death and proliferation of the total mononuclear cell population and of CD4+, CD8+, B cell and monocyte populations. RESULTS: The Lemna extracts were not cytotoxic and did not cause cell necrosis or apoptosis in immune cells. At low concentrations, they induced very limited proliferation of CD4+ cells within 48 hours. At high concentrations, they induced proliferation of CD8+ cells and B lymphocytes within 48 hours. CONCLUSIONS: Unfortunately, we failed to confirm any immunomodulatory activity of Lemna extracts. Growth and death rates of human immune cells were not significantly affected by adding Lemna extracts to the culture medium

    Not Available

    No full text
    Not AvailableThe microbial diversity in the rhizosphere of different biotypes is influenced by different factors like plant species, root exudates and soil environment. Culturable microbial diversity in the rhizosphere of six biotypes (Chenopodium murale (CM), Spergula arvensis (SA), Launaea nudicaulis (LN), Brassica juncea (BJ), Phalaris minor (PM) and Triticum aestivum (TA)) growing in variable saline environment (ECe 8.0 dS m−1) was assessed and compared with the diversity of bulk soils (BS) of same environments. The significantly (P < 0.0001) highest bacterial and actinomycetes population were found in the rhizosphere of BJ whereas SA possessed higher fungal population. Phosphorus and zinc solubilizing bacteria was also found highest in BJ and TA rhizosphere, respectively. High saline soils had greater endospore forming bacterial population. The TA (0.88) and LN (0.87) rhizospheres showed significantly greater Shannon–Weiner diversity index compared to bulk soils (0.45–0.61). Pielou’s index of evenness of different samples ranged from 0.13 to 0.43. Discriminant function analysis revealed that rhizospheres of SA, CM and TA were clearly distinct. The rhizospheric soil of PM and BJ were similar to each other but clearly distinct from others. The observed separation of different biotypes was regulated by dimorphic fungi, nitrogen fixing bacteria, Pseudomonas, and fungi. Thus, our study clearly suggests that culturable microbial populations are influenced by different biotypes and salinity levels.Not Availabl

    Naturally-occurring and cultured bacteriophages in human therapy

    No full text
    OBJECTIVE: The aim of the study was to show the importance of developing techniques that could exploit the potential of bacteriophages as therapeutics or food supplements

    Genetics of fat deposition

    No full text
    Adipose tissue distribution usually varies among men and women. In men, adipose tissue is known to accumulate in the abdominal region surrounding the visceral organs (android fat distribution) whereas, in women, the accumulation of adipose tissue generally occurs in the gluteal-femoral regions (gynoid fat distribution). In some cases, however, android distribution can be found in women and gynoid distribution can be found in men. The regulation of adipose tissue accumulation involves interaction of a variety of genetic and environmental factors. This review examines genetic factors that cause differential distribution of adipose tissue in different depots of the body, between men and women and between different ethnicities. Genome-wide association studies can be used to identify genetic associations with the distribution and accumulation of adipose tissue. Insight into adipose tissue accumulation and distribution mechanisms could lead to development of personalized interventions for people who develop increased fat mass

    Syndromic infertility

    Get PDF
    Infertility due to genetic mutations that cause other defects, besides infertility, is defined as syndromic. Here we describe three of these disorders for which we perform genetic tests. 1) Hypopituitarism is an endocrine syndrome characterized by reduced or absent secretion of one or more anterior pituitary hormones with consequent dysfunction of the corresponding peripheral glands. Deficiencies in all the hormones is defined as pan-hypopituitarism, lack of two or more hormones is called partial hypopituitarism, whereas absence of a single hormone is defined as selective hypopituitarism. Pan-hypopituitarism is the rarest condition, whereas the other two are more frequent. Several forms exist: congenital, acquired, organic and functional. 2) The correct functioning of the hypothalamic-pituitary-gonadal axis is fundamental for sexual differentiation and development during fetal life and puberty and for normal gonad function. Alteration of the hypothalamic-pituitary system can determine a condition called hypogonadotropic hypogonadism, characterized by normal/low serum levels of the hormones FSH and LH. 3) Primary ciliary dyskinesia is frequently associated with infertility in males because it impairs sperm motility (asthenozoospermia). Primary ciliary dyskinesia is a group of genetically and phenotypically heterogeneous disorders that show morpho-structural alterations of the cilia. Adult women with primary ciliary dyskinesia can be subfertile and have an increased probability of extra-uterine pregnancies. This is due to delayed transport of the oocyte through the uterine tubes

    A pilot study on the preventative potential of alpha-cyclodextrin and hydroxytyrosol against SARS-CoV-2 transmission

    No full text
    BACKGROUND AND AIM OF THE WORK: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current pandemics. This virus attacks the cells by binding to the transmembrane angiotensin I converting enzyme 2. In this study, we experimented a food supplement containing alpha-cyclodextrin and hydroxytyrosol for the improvement of the defenses against the SARS-CoV-2. Hydroxytyrosol has anti-viral properties and is able to reduce the serum lipids in mice. \u3b1-cyclodextrin has the ability to deplete sphingolipids and phospholipids from the cellular membranes. The aim of the present preliminary open non-controlled interventional study was to evaluate the efficacy of alpha-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2. METHODS: Fifty healthy volunteers at a higher risk of SARS-CoV-2 infection from Northern Cyprus and six positive individuals for SARS-CoV-2 were enrolled in this study. The in silico prediction was performed using D3DOCKING to evaluate the interactions of hydroxytyrosol and alpha-cyclodextrin with proteins involved in the SARS-CoV-2 endocytosis. RESULTS: The 50 volunteers did not become positive in 15 days for SARS-CoV-2 after the administration of the compound for two weeks, despite they were at higher risk of infection than the general population. Interestingly, in the cohort of six positive patients, two patients were administered the spray and became negative after five days, despite the viral load was higher in the treated subjects than the untreated patients who became negative after ten days. In addition, we identified possible interactions among hydroxytyrosol and alpha-cyclodextrin with the protein Spike and the human proteins ACE2 and TMPRSS2. CONCLUSIONS: We reported on the results of the possible role of alpha-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2. The next step will be the administration of the compound to a larger cohort in a controlled study to confirm the reduction of the infection rate of SARS-CoV-2 in the treated subjects

    Steroid-converting enzymes in human adipose tissues and fat deposition with a focus on AKR1C enzymes

    No full text
    Adipocytes express various enzymes, such as aldo-keto reductases (AKR1C), 11β-hydroxysteroid dehydrogenase (11β-HSD), aromatase, 5α-reductases, 3β-HSD, and 17β-HSDs involved in steroid hormone metabolism in adipose tissues. Increased activity of AKR1C enzymes and their expression in mature adipocytes might indicate the association of these enzymes with subcutaneous adipose tissue deposition. The inactivation of androgens by AKR1C enzymes increases adipogenesis and fat mass, particularly subcutaneous fat. AKR1C also causes reduction of estrone, a weak estrogen, to produce 17β-estradiol, a potent estrogen and, in addition, it plays a role in progesterone metabolism. Functional impairments of adipose tissue and imbalance of steroid biosynthesis could lead to metabolic disturbances. In this review, we will focus on the enzymes involved in steroid metabolism and fat tissue deposition
    corecore