18 research outputs found

    RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF

    Full text link
    An unsteady flamelet/progress variable (UFPV) approach is used to model a lifted H2/N2 flame in a RANS framework together with presumed PDF. We solve the unsteady flamelets both in physical space and in mixture fraction space. We show that in the former case, the scalar dissipation rate profile strongly varies in time (while it is assumed to be fixed in time in the latter). However, this does not result in significant qualitative differences in the corresponding flamelet libraries. The progress variable is carefully defined, including both the main combustion product (H2O) and a key radical species in ignition process (HO2). The presumed-PDF model is proposed in terms of the non-normalised progress variable, without assuming its statistical independence with mixture fraction. We introduce a modelled transport equation for the mean progress variable which is consistent with the basic underlying UFPV assumption, derived from the Lagrangian flamelet model. The influence of different model parameters on the results for the mean temperature and mean species mass fractions and their fluctuations is discussed. Good results are obtained for the conditions of the considered lifted flame where detailed experimental data is available. However, at low coflow temperature the modelled flame lift-off height is shorter than expected.This work is supported by the Comunidad de Madrid through Project HYSYCOMB P2009/ENE-1597 and by the Spanish Ministry of Economy and Competitiveness under Projects ENE2008-06515-004-02 and CSD2010-00011. This research was also partially supported by the Generalitat Valenciana inside the program Ajudes per a la realitzacio de projectes d'I+D per a grups de investigaclel emergent (Reference GV/2013/041), which is gratefully acknowledged.Naud, B.; Novella Rosa, R.; Pastor Enguídanos, JM.; Winklinger, JF. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame. 162(4):893-906. https://doi.org/10.1016/j.combustflame.2014.09.014S893906162

    Cell Arrangement of Lithium-ion Battery Pack for Improvement in Cooling Performance of Air-Cooled Battery Thermal Management System

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļŠāļīāļ‡āļ•āļąāļ§āđ€āļĨāļ‚āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļˆāļąāļ”āļāļēāļĢāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ”āđ‰āļ§āļĒāļ­āļēāļāļēāļĻ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ•āđ‰āļ™āļ—āļļāļ™āļāļēāļĢāļœāļĨāļīāļ•āļ—āļĩāđˆāļ•āđˆāļģ, āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āļ—āļĩāđˆāđ„āļĄāđˆāļ‹āļąāļšāļ‹āđ‰āļ­āļ™ āđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļŠāļ–āļĩāļĒāļĢāļ āļēāļžāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ—āļĩāđˆāļŠāļđāļ‡ āđ‚āļ”āļĒāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļĨāļīāđ€āļ˜āļĩāļĒāļĄāđ„āļ­āļ­āļ­āļ™āļĢāļļāđˆāļ™ 1860B āļˆāļģāļ™āļ§āļ™ 40 āđ€āļ‹āļĨāļĨāđŒ āļ—āļĩāđˆāļĄāļĩāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ āđ„āļ”āđ‰āđāļāđˆ āđāļ™āļ§āđ€āļ”āļĩāļĒāļ§āļāļąāļ™, āđāļ™āļ§āđ€āļĒāļ·āđ‰āļ­āļ‡ āđāļĨāļ°āđāļ™āļ§āļŠāļĨāļąāļš āđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļŠāļĄāļĢāļĢāļ–āļ™āļ°āļāļēāļĢāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āđāļ•āđˆāļĨāļ°āļĢāļđāļ›āđāļšāļš āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ­āļēāļāļēāļĻ āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļāļāđ‡āļ–āļđāļāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļĢāđˆāļ§āļĄāļ”āđ‰āļ§āļĒ āđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāđƒāļŦāđ‰āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ—āļģāļ‡āļēāļ™āļ­āļĒāļđāđˆāļ āļēāļĒāđƒāļ™āļŠāđˆāļ§āļ‡āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ āļ‹āļķāđˆāļ‡āļĄāļĩāļ„āđˆāļēāđ„āļĄāđˆāđ€āļāļīāļ™ 40C āđ‚āļ”āļĒāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ–āļđāļāļˆāļģāļĨāļ­āļ‡āļ‚āļķāđ‰āļ™āđ‚āļ”āļĒāļ­āļēāļĻāļąāļĒāļ‚āđ‰āļ­āļĄāļđāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ āļēāļĒāđƒāļ•āđ‰āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđāļ§āļ”āļĨāđ‰āļ­āļĄāļ•āđˆāļēāļ‡ āđ† āļˆāļēāļāļœāļĨāļāļēāļĢāļˆāļģāļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āđ€āļĄāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ‚āļ­āļ‡āļ­āļēāļāļēāļĻāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļĢāļ°āļšāļšāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āđ‚āļ”āļĒāļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™āļ­āļĒāđˆāļēāļ‡āļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡āļ āļēāļĒāđƒāļ•āđ‰āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļ 0.5C āļ­āļēāļˆāđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļžāļķāđˆāļ‡āļžāļēāļĢāļ°āļšāļšāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ”āđ‰āļ§āļĒāļ­āļēāļāļēāļĻāđāļšāļšāļšāļąāļ‡āļ„āļąāļš āđāļĨāļ°āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ—āļģāļ‡āļēāļ™āļ”āđ‰āļ§āļĒāļ­āļąāļ•āļĢāļēāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļ 1C āļāļēāļĢāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļĄāļĩāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ‚āļ­āļ‡āļ­āļēāļāļēāļĻāļ­āļĒāđˆāļēāļ‡āļ™āđ‰āļ­āļĒ 1 m/s āđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāđƒāļŦāđ‰āļ­āļĒāļđāđˆāļ āļēāļĒāđƒāļ™āļŠāđˆāļ§āļ‡āļ—āļĩāđˆāļāļģāļŦāļ™āļ” āđāļ•āđˆāļĢāļ°āļšāļšāļˆāļąāļ”āļāļēāļĢāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ”āđ‰āļ§āļĒāļ­āļēāļāļēāļĻāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ„āļ§āļšāļ„āļļāļĄāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāđ„āļ”āđ‰āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļāļ­āļĒāđˆāļēāļ‡āļĢāļ§āļ”āđ€āļĢāđ‡āļ§ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āđāļ‡āđˆāļ‚āļ­āļ‡āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ„āļ·āļ­āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āđāļšāļšāđāļ™āļ§āđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āđāļĨāļ°āļŠāđˆāļ­āļ‡āļ§āđˆāļēāļ‡āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāļ­āļĒāļđāđˆāļ•āļīāļ”āļāļąāļ™āļ„āļ·āļ­āļ›āļĢāļ°āļĄāļēāļ“ 1.5 āļĄāļĄ.Air-cooled thermal management system has been numerically studied due to low manufacturing cost, simple layout structure and high reliability of the system. A set of Lithium-ion battery pack 18650B consisting of 40 cells was investigated under different cell arrangement structures, i.e., inline, offset, and staggered configurations in order to evaluate their cooling performances. Additionally, the effects of inlet velocity and discharge rate were taken into consideration to guarantee the temperature of batteries in operation within an optimal range, i.e., not over 40 °C. The heat simulation model of battery cells was developed based on the data acquired from the test under various ambient temperatures. The simulation results revealed that the increased air velocity resulted in better cooling performance of the system. The continuously operating battery pack under the discharge rate of 0.5C may not rely on the forced air-cooling system. When the battery pack discharging of 1C-rate, it required at least the air velocity of 1 m/s for cooling the battery within the optimal working temperature range. However, the forced-air cooling strategy was unable to control the temperature of the battery cell in case of fast discharging rate. Furthermore, the best cell arrangement in terms of cooling performance is the inline configuration and the appropriate gap between adjacent cells is about 1.5 mm

    Application of spray combustion simulation in DI diesel engine

    No full text
    This work presents the development and implementation of combustion model for DI diesel engines by using the PDF-Chemical Equilibrium combustion model. The key concept of this approach is to predict the thermochemical variables (e.g., temperature, species mass fractions) and then the average scalars of these variables are evaluated by a probability density function (PDF) averaging approach. To realize flame propagation, the reaction time scale is employed to relax the infinitely fast chemistry of chemical equilibrium. The PDF-Eddy Break Up ignition model is adopted in the auto-ignition calculation. With regard to the comparison results, the simulation results are in good agreement with the experimental results in both ignition and combustion modes. In addition, the predicted lift-off length also corresponds to a power-law scaling of Siebers et al.Combustion Chemical equilibrium Diesel Modelling Spray Simulation
    corecore