9 research outputs found

    Satellite Navigation and Communication Integration Based on Correlation Domain Indefinite Pulse Position Modulation Signal

    No full text
    Ubiquitous signal coverage is a basic demand of Internet of Things (IoT) communications, which meets the feature of satellite communications. Infinite user number is a basic demand of IoT location-based services, which meets the feature of Global Navigation Satellite System (GNSS). Both of these demands make Satellite Navigation and Communication Integration (SNCI) an important supporting technology for IoT. Inherited from the satellite communications system, GNSS itself has a certain data transmission capacity. Thus, enhancing the communication function of the GNSS is a promising means of achieving SNCI. Considering that a unified signal system cannot currently realize high-precision positioning and high-speed data transmission simultaneously in SNCI, this project proposes a Correlation Domain Indefinite Pulse Position Modulation (CDIPPM). A pilot channel and a data channel are introduced in this technology, which are distinguished by Code Division Multiplexing (CDMA). The synchronization function is provided by the pilot channel, thereby freeing the data channel of this function. The phase of the pseudorandom code can then be used as the carrier of information. In order to transmit more information, the transmitter of the proposed technology superimposes on the data channel multiple sets of spread spectrum sequence, which are generated from one set of spread spectrum sequence by different cyclic shifting operations. The receiver will identify the number and location of the correlation function peaks by a detection algorithm and recover the message. It can be seen by theoretical analysis and simulation verification. The technology can significantly improve satellite data transmission rates and maintain the original positioning function while minimizing change in the original GNSS signal. Therefore, the SNCI system based on this technology has the following advantages: a unified signal system, high positioning accuracy, high data transmission rate, and a backward navigation function, and it is easy to promote

    Joint Resource Allocation of Spectrum Sensing and Energy Harvesting in an Energy-Harvesting-Based Cognitive Sensor Network

    No full text
    The cognitive sensor (CS) can transmit data to the control center in the same spectrum that is licensed to the primary user (PU) when the absence of the PU is detected by spectrum sensing. However, the battery energy of the CS is limited due to its small size, deployment in atrocious environments and long-term working. In this paper, an energy-harvesting-based CS is described, which senses the PU together with collecting the radio frequency energy to supply data transmission. In order to improve the transmission performance of the CS, we have proposed the joint resource allocation of spectrum sensing and energy harvesting in the cases of a single energy-harvesting-based CS and an energy-harvesting-based cognitive sensor network (CSN), respectively. Based on the proposed frame structure, we have formulated the resource allocation as a class of joint optimization problems, which seek to maximize the transmission rate of the CS by jointly optimizing sensing time, harvesting time and the numbers of sensing nodes and harvesting nodes. Using the half searching method and the alternating direction optimization, we have achieved the sub-optimal solution by converting the joint optimization problem into several convex sub-optimization problems. The simulation results have indicated the predominance of the proposed energy-harvesting-based CS and CSN models

    Morphology and Luminescence Regulation for CsPbBr<sub>3</sub> Perovskite Light-Emitting Diodes by Controlling Growth of Low-Dimensional Phases

    No full text
    At present, the high defect density and strong nonradiative recombination rate of all-inorganic cesium lead bromide (CsPbBr3) perovskite light-emitting diodes (PeLEDs) seriously inhibit the improvement of their quantum efficiency. In this paper, the addition of a short-chain additive, diethylammonium bromide (DEABr), aims to control the generation of a quasi-2D large n-phase to optimize the surface morphology and construct two-dimensional/three-dimensional (2D/3D) heterojunction perovskite structures to enhance the EL efficiency of PeLEDs. Through Kelvin probe force microscopy (KPFM) characterization, we confirmed that the 2D phase grains with a low potential are locally formed on the surface of the perovskite film under the action of DEABr. The existence of the 2D phase effectively improved the surface morphology and suppressed surface defects. In addition, the in situ constructed 2D/3D heterojunction perovskite structure further increases the exciton radiative recombination rate and significantly improves the electroluminescent performance. By optimizing its doping concentration, the optimal all-inorganic PeLED displays a current efficiency (CE) of 30.3 cd A–1, an external quantum efficiency (EQE) of 9.6%, and a maximum brightness of 32,500 cd m–2. According to our results, the formation of 2D structures on the surface of the CsPbBr3 film can improve surface morphology issues and optoelectronic properties of the film

    6G Near-field Technologies White Paper

    No full text
    No abstract available
    corecore