163 research outputs found
Thermal partition function of photons and gravitons in a Rindler wedge
The thermal partition function of photons in any covariant gauge and
gravitons in the harmonic gauge, propagating in a Rindler wedge, are computed
using a local -function regularization approach. The correct Planckian
leading order temperature dependence is obtained in both cases. For the
photons, the existence of a surface term giving a negative contribution to the
entropy is confirmed, as earlier obtained by Kabat, but this term is shown to
be gauge dependent in the four-dimensional case and, therefore is discarded. It
is argued that similar terms could appear dealing with any integer spin in the massless case and in more general manifolds. Our conjecture is
checked in the case of a graviton in the harmonic gauge, where different
surface terms also appear, and physically consistent results arise dropping
these terms. The results are discussed in relation to the quantum corrections
to the black hole entropy.Comment: 29 pages, RevTeX, no figures. Minor errors corrected and a few
comments changed since first submission. To be published on Phys.Rev.
Full configuration interaction approach to the few-electron problem in artificial atoms
We present a new high-performance configuration interaction code optimally
designed for the calculation of the lowest energy eigenstates of a few
electrons in semiconductor quantum dots (also called artificial atoms) in the
strong interaction regime. The implementation relies on a single-particle
representation, but it is independent of the choice of the single-particle
basis and, therefore, of the details of the device and configuration of
external fields. Assuming no truncation of the Fock space of Slater
determinants generated from the chosen single-particle basis, the code may
tackle regimes where Coulomb interaction very effectively mixes many
determinants. Typical strongly correlated systems lead to very large
diagonalization problems; in our implementation, the secular equation is
reduced to its minimal rank by exploiting the symmetry of the effective-mass
interacting Hamiltonian, including square total spin. The resulting Hamiltonian
is diagonalized via parallel implementation of the Lanczos algorithm. The code
gives access to both wave functions and energies of first excited states.
Excellent code scalability in a parallel environment is demonstrated; accuracy
is tested for the case of up to eight electrons confined in a two-dimensional
harmonic trap as the density is progressively diluted and correlation becomes
dominant. Comparison with previous Quantum Monte Carlo simulations in the
Wigner regime demonstrates power and flexibility of the method.Comment: RevTeX 4.0, 18 pages, 6 tables, 9 postscript b/w figures. Final
version with new material. Section 6 on the excitation spectrum has been
added. Some material has been moved to two appendices, which appear in the
EPAPS web depository in the published versio
Ambiguity in the evaluation of the effective action on the cone
An ambiguity in the computation of the one-loop effective action for fields
living on a cone is illustrated. It is shown that the ambiguity arises due to
the non-commutativity of the regularization of ultraviolet and (conical)
boundary divergencies.Comment: REVTeX file, 10 pages. Comments on recent papers have been adde
Comparing migration in Britain and Australia: Harmonisation through use of age-time plans
Differences in the way migration is measured impede cross-national comparisons of internal migration. In this paper we utilise age-time diagrams to elucidate these problems for Australia and the United Kingdom and present solutions which generate time series of interregional migration for the two countries, harmonised with respect to age-time plans. We achieve this through estimation of the numbers of migration transitions (Australia) or migration events (Britain) for common age-period-cohort (APC) spaces. We derive appropriate population stocks for computation of transition probabilities or occurrence-exposure rates. In the final section of the paper we present a series of migration-intensity calculations based on varying combinations of period-cohort, period-age, and age-period-cohort perspectives, to demonstrate the significance of the variations, and the errors that can arise without harmonisation
Blue-red electroluminescence from hybrid Eu:phosphors/ZnO-nanowires/p-GaN LED
Access full text - https://doi.org/10.1117/12.2041772Nanowire (NW) based light emitting diodes (LEDs) have drawn great research interest due to many advantages compared to thin film based devices. Marked improved performances are expected from nanostructured active layers for light emission. Semiconducting oxide nanowires can act as direct waveguides and favor emitted light extraction without use of lens and reflectors in LEDs. Moreover, the use of ZnO wires avoids the presence of grain boundaries and then the emission efficiency is boosted by the absence of non-radiative recombinations at the joint defects. In this context, europium (Eu):Chelate/ZnO:Mg-nanowires/p-GaN light-emitting-diode (LED) structures have been fabricated showing near-UV/violet electroluminescence and red emission from trivalent europium. Fabricated LED structures exhibit UV-blue light at about 380 nm coming from the n-(ZnO:Mg)/p-GaN and a sharp red emission at ∼611 nm related to the intra-4f transition of Eu ions. It is found that in the case of the ZnO:Mg, the emission wavelength is slightly shifted to smaller wavelength to be well adapted to the trivalent europium excitation band. Radiative energy transfer is achieved through strong overlap between the emission wavelength from n-(ZnO:Mg)/p-GaN heterojunction and chelate ligand intensive absorption band. Indeed the Eu:chelate/(ZnO:Mg)-nanowires/p-GaN structure appears well adapted to UV/blue and red dual emission. Our results shows that the design of LEDs based on the chelate ligands are important issue to enhance the performance of electroluminescence devices based on ZnO nanowire arrays/p-GaN heterojunction and rare-earth metal complexes
Via-SEES: Variability in Atmosphere from Solar Energetic Electrons
Variability In Atmosphere from Solar Energetic Electron Study (VIA-SEES) is a hybrid science mission and technology development campaign from the Earth and Planetary Exploration Technologies (EPET) program at the University of Hawai’i. It is oriented around establishing a direct correlation between Solar Radiation Events (SREs) and Variability in Atmospheric gases, specifically Nitric and Nitrous Oxide, as well as Ozone. The mission is intended to fly on a 3U CubeSat and will collect a data set which is multimodal. To achieve robust performance, a variety of techniques are employed to make the science data set easier to interpret by an analyst. It is important to consider the format of the data sets, which is generally given by the instrument collecting the data. To allow for a better establishment of an anticoincidence, meaning that there is a precise correlation between 2 readings on the same index, a systems engineering approach is taken. This is as the science mission requirements should drive the design of the mission. A comprehensive approach is taken in the design of the VIA-SEES spacecraft, to maximize the scientific value of the mission
PV-0531: Multi-centre evaluation of atlas-based and deep learning contouring using a modified Turing Test
The fundraising academy: an experimental model combining knowledge exchange, real-life professional training and the development of socio-emotional intelligence
This chapter presents the case study of Bournemouth University’s Fusion Fundraising Academy, and the role that practical experience plays in the development of soft skills for students and interns. It addresses Devis-Rozental’s theory of socio-emotional intelligence having a positive impact on others and our environment, and discusses the abstract idea of leading beyond authority as coined by Common Purpose. It highlights the need for wellness and resilience in fundraisers, and addresses the most common graduate skills gaps, as identified by The Institute of Student Employers. The chapter details the steep learning curve experienced by both the interns and the university staff who developed and ran the Academy, and highlights the lessons learned for other institutions considering the model
Natural limit on the gamma/hadron separation for a stand alone air Cherenkov telescope
The gamma/hadron separation in the imaging air Cherenkov telescope technique
is based on differences between images of a hadronic shower and a gamma induced
electromagnetic cascade. One may expect for a large telescope that a detection
of hadronic events containing Cherenkov light from one gamma subcascade only is
possible. In fact, simulations show that for the MAGIC telescope their fraction
in the total protonic background is about 1.5% to 5.2% depending on the trigger
threshold. It has been found that such images have small sizes (mainly below
400 photoelectrons) which correspond to the low energy primary gamma's (below
100 GeV). It is shown that parameters describing shapes of images from one
subcascade have similar distributions to primary gamma events, so those
parameters are not efficient in all methods of gamma selection. Similar studies
based on MC simulations are presented also for the images from 2 gamma
subcascades which are products of the same pi^0 decay. The ratio of the number
of the expected background from false gamma and one pi^0 to the number of the
triggered high energy photons from the Crab direction has been estimated for
images with a small alpha parameter to show that the occurrence of this type of
protonic shower is the reason for the difficulties with true gamma selection at
low energies.Comment: 12 pages, 7 figures, published in Journal of Physics
Gene Constellation of Influenza A Virus Reassortants with High Growth Phenotype Prepared as Seed Candidates for Vaccine Production
BACKGROUND: Influenza A virus vaccines undergo yearly reformulations due to the antigenic variability of the virus caused by antigenic drift and shift. It is critical to the vaccine manufacturing process to obtain influenza A seed virus that is antigenically identical to circulating wild type (wt) virus and grows to high titers in embryonated chicken eggs. Inactivated influenza A seasonal vaccines are generated by classical reassortment. The classical method takes advantage of the ability of the influenza virus to reassort based on the segmented nature of its genome. In ovo co-inoculation of a high growth or yield (hy) donor virus and a low yield wt virus with antibody selection against the donor surface antigens results in progeny viruses that grow to high titers in ovo with wt origin hemagglutinin (HA) and neuraminidase (NA) glycoproteins. In this report we determined the parental origin of the remaining six genes encoding the internal proteins that contribute to the hy phenotype in ovo. METHODOLOGY: The genetic analysis was conducted using reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP). The characterization was conducted to determine the parental origin of the gene segments (hy donor virus or wt virus), gene segment ratios and constellations. Fold increase in growth of reassortant viruses compared to respective parent wt viruses was determined by hemagglutination assay titers. SIGNIFICANCE: In this study fifty-seven influenza A vaccine candidate reassortants were analyzed for the presence or absence of correlations between specific gene segment ratios, gene constellations and hy reassortant phenotype. We found two gene ratios, 6:2 and 5:3, to be the most prevalent among the hy reassortants analyzed, although other gene ratios also conferred hy in certain reassortants
- …
