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of the 2015 MICCAI Head and Neck Auto Segmentation 
Challenge [2], carefully annotated according to clinical 
guidelines [3]. Dataset B contains 467 training and 40 test 
cases with routine-level clinical annotations. The DNN 
architecture used is a modified 2D U-Net [1], trained 
three times on each dataset on image patches in 
transversal, sagittal and coronal view respectively. We 
calculate an ensemble prediction by averaging the three 
individual models’ predictions and post-process it by 
binarization and selection of the largest connected 
component. Both ensemble models trained on dataset A 
(referred to as model Ma) vs. B (denoted Mb) are 
evaluated on the test cases of A and B, using the Dice 
score as similarity measure to the reference 
segmentation. 
Results  
Figure 1 shows box plots of the Dice scores obtained on 
the test cases of A and B from both models Ma and Mb. 
The results of models Ma and Mb on a single test dataset 
are similar. The overall highest median Dice score of 
0.887 is obtained when evaluating model Ma on the test 
cases of A, the score of Mb on A is slightly lower at 0.845. 
However there is a difference between evaluation on test 
datasets A and B for both models. On the curated dataset 
A, the median of the Dice score is higher and the 
variance is significantly lower than on the clinical dataset 
B for both models. This is probably due to the 
inconsistent references in dataset B which makes 
quantitative evaluation on this dataset difficult.  
 

Fig. 1: Dice score of the models Ma and Mb on the test 
cases of datasets A and B. 
Conclusion  
A main problem of using clinical data for training and 
testing is the difficulty of quantitative evaluation which 
is also done in each training step of the DNN. However, 
on curated testing data, segmentation results after 
training on clinical vs. curated data seem to be very 
similar. This suggests that more easily available routine-
level clinical data may be sufficient to train high quality 
segmentation DNNs, but curated data may be helpful for 
quantitative evaluation. A clinical qualitative evaluation 
of both models on data independent from both A and B is 
work in progress. 
[1] Ronneberger O et al., MICCAI LNCS, Vol. 9351, 234–
241, 2015 
[2] Raudaschl PF et al., Med. Phys., 44(5), 2020–2036, 
2017 
[3] Sharp GC et al., A Public Domain Database for 
Computational Anatomy, 2017 
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Purpose or Objective  
While quantitative assessment of autocontouring quality 
is useful, frequently used measures do not necessary 
indicate clinical acceptability or benefit. In contrast, 
clinical based assessment metrics, such as time saved 
with autocontouring or subjective evaluations, are both 
time consuming to perform and difficult to implement in 
a multi-centre evaluation. Inspiration is taken from the 
Artificial Intelligence community to propose an 
assessment method based on the 'Turing Test”. The 
objective of this study was to perform a multi-centre 
evaluation of two autocontouring methods using this 
approach. 
Material and Methods  
A website was set up to facilitate multi-centre 
comparison. For each assessment, participants were 
shown single slice CT images including an OAR contour, 
and were asked one of three questions; 1) whether they 
thought the contour was drawn by autocontouring or a 
human, 2) whether they would accept or reject the 
contour for use in clinical practice, and 3) which contour 
they preferred when shown two OAR contours. The CT 
slice, OAR and question were chosen randomly from a 
database.  
The database consisted of 60 clinical cases from a single 
institution (40 thoracic, 20 prostate). Participants 
selected a body region based on their expertise. In 
addition to the clinical contours, OARs were created 
using atlas-based contouring [ABC] WorkflowBox 1.4, 
Mirada Medical, Oxford, UK) and deep learning-based 
contouring [DLC] (WorkflowBox 2.0 alpha, Mirada 
Medical, Oxford, UK). Both ABC and DLC were trained 
using other cases from the same institution. 
Each participant was asked 100 questions for each 
anatomic region. For the thoracic evaluation; 15 clinical 
participants (clinicians, dosimetrist or technicians) from 5 
institutions participated, with 5 from the institution 
providing the contours. For the prostate evaluation; 6 
clinical participants from 3 institutions participated, with 
4 from the institution providing the contours.Results  
The figure and table show the results summarised over all 
organs for each contouring method.  
For the thoracic evaluation, participants found it hard to 
identify the source of contours. The overall acceptance 
of DLC was higher than that of ABC, approaching the 
same level of acceptance as the clinical contours. Both 
DLC and Clinical are preferred to ABC, with Clinical being 
preferred slightly more than DLC.  
For the prostate evaluation, participants found it easier 
to identify the source of contours, but with greater 
misclassification being caused by DLC. Acceptance of DLC 
was higher than that of ABC, but still below that of the 
original clinical contours. Users expressed a preference 
for DLC and Clinical over ABC, with Clinical being 
marginally preferred to DLC. 
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Conclusion  
The web-based assessment method provides an easy way 
to perform multi-centre validation of autocontouring. 
This study showed that autocontours may be confused 
with clinical ones, when reviewed blind, and DLC 
contours were accepted at a similar rate to clinical ones. 
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Purpose or Objective  
MR images are often used in radiotherapy for delineation 
of treatment volumes and organs at risk. However, 
electron density information is also required when 
performing treatment planning. Traditionally, this 
information comes from CT images of the patient. If 
synthetic CT (sCT) images are instead generated from MR 
images, an MR-only workflow can be achieved. This 
allows for reduced registration errors, and can for 
instance also pave the way for individualized treatment 

based on the progression of the tumor during treatment 
in a combined MR-LINAC. 
In this project, we are investigating the generation of sCT 
images using deep learning. The dosimetric accuracy 
when using these images for treatment planning is 
evaluated. 
Material and Methods  
20 male patients with prostate- or rectal-cancer were 
imaged in both a CT scanner and a 3T MR camera as part 
of their regular clinical treatment. A deep convolutional 
neural network (DCNN), using the U-net architecture, was 
trained on image data from 15 of the patients, and then 
used to generate sCTs for the remaining five patients. 
The network had 13 convolution layers in the encoding 
part and 14 convolution layers in the decoding part, with 
interleaved subsampling and upsampling layers. Skip 
connections were used to pass information from the 
encoding part to the decoding part at different sampling 
levels. 
Fat and Water images from a 2-point Dixon sequence 
were used as input to the DCNN. The MR images used 2.4 
mm isotropic voxels, and an in-plane resolution of 
192x192 pixels. The CT images had a slice thickness of 
2.0 mm, an in-plane resolution of 512x512 pixels, and a 
FOV of 55 cm. Before training, the CT images were 
registered to the MR images, and downsampled to the 
same resolution. 
Treatment plans were created based on the original 
unmodified CT images. For the five patients with 
generated sCTs, the treatment plans were then re-
calculated based on the DCNN-created sCTs, and the dose 
distributions of the two plans were compared. 
Results  
The error in average dose to the PTV ranged from 0.03% 
to 0.46% (mean 0.28%). For the CTV, the corresponding 
range was 0.03% to 0.42% (mean 0.25%). Gamma analysis 
using a 2%/2-mm global gamma criteria showed a 98.67% 
to 100.00% (mean 99.60%) pass rate for the PTV, and 
97.78% to 99.78% (mean 99.13%) for the volume receiving 
dose >15% of the prescribed dose.  
 

 
Conclusion  
The results are encouraging, and show that sCTs 
generated from MR images by a DCNN can be used to 
calculate treatment plans with dosimetric accuracy 
comparable to that achieved with sCTs generated by 
other methods. Using deep learning for sCT generation 
shows great promise since the method has the potential 
to robustly handle differences in the input images. Such 
differences could for instance stem from different MR 
cameras being used, or a difference in the specific 
sequences being used as input. This means that the 
method would not necessarily be site-specific, but could 
with minor adjustments be used at different sites with 
varying clinical protocols. 
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