32 research outputs found

    Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA1005, doi:10.1029/2005PA001188.Holocene sea surface temperatures (SST) of the Black Sea have been reconstructed using sedimentary C37 unsaturated alkenones assumed to be derived from the coccolithophorid haptophyte Emiliania huxleyi, whose fossil coccoliths are an important constituent of the unit I sediments. However, alkenones can also be biosynthesized by haptophyte species that do not produce microscopic recognizable coccoliths. A species-specific identification of haptophytes is important in such U 37 K′-based past SST reconstructions since different species have different alkenone-SST calibrations. We showed that 18S rDNA of E. huxleyi made up only a very small percentage (less than 0.8%) of the total eukaryotic 18S rDNA within the up to 3600-year-old fossil record obtained from the depocenter (>2000 m) of the Black Sea. The predominant fossil 18S rDNA was derived from dinoflagellates (Gymnodinium spp.), which are predominant members of the summer phytoplankton bloom in the modern Black Sea. Using a polymerase chain reaction/denaturing gradient gel electrophoresis method selective for haptophytes, we recovered substantial numbers of a preserved 458-base-pair (bp)-long 18S rDNA fragment of E. huxleyi from the Holocene Black Sea sediments. Additional fossil haptophyte sequences were not detected, indicating that the E. huxleyi alkenone-SST calibration can be applied for at least the last ∼3600 years. The ancient E. huxleyi DNA was well protected against degradation since the DNA/alkenone ratio did not significantly decrease throughout the whole sediment core and 20% of ∼2700-year-old fossil E. huxleyi DNA was still up to 23,000 base pairs long. We showed that fossil DNA offers great potential to study the Holocene paleoecology and paleoenvironment of anoxic deep-sea settings in unprecedented detail.This work was supported by a grant from the Netherlands Organization for Scientific Research (NWO) (Open Competition Program 813.13.001 to M.J.L.C.) and NSF grant OCE0117824 to S.G.W., which we greatly appreciate

    Haslea silbo, a novel cosmopolitan species of blue diatoms

    Get PDF
    Specimens of a new species of blue diatoms from the genus Haslea Simonsen were discovered in geographically distant sampling sites, first in the Canary Archipelago, then North Carolina, Gulf of Naples, the Croatian South Adriatic Sea, and Turkish coast of the Eastern Mediterranean Sea. An exhaustive characterization of these specimens, using a combined morphological and genomic approach led to the conclusion that they belong to a single new to science cosmopolitan species, Haslea silbo sp. nov. A preliminary characterization of its blue pigment shows similarities to marennine produced by Haslea ostrearia, as evidenced by UV–visible spectrophotometry and Raman spectrome-try. Life cycle stages including auxosporulation were also observed, providing data on the cardinal points of this species. For the two most geographically distant populations (North Carolina and East Mediterranean), complete mitochondrial and plastid genomes were sequenced. The mitogenomes of both strains share a rare atp6 pseudogene, but the number, nature, and positions of the group II introns inside its cox1 gene differ between the two populations. There are also two pairs of genes fused in single ORFs. The plastid genomes are characterized by large regions of recombination with plasmid DNA, which are in both cases located between the ycf35 and psbA genes, but whose content differs between the strains. The two sequenced strains hosts three plasmids coding for putative serine recombinase protein whose sequences are compared, and four out of six of these plasmids were highly conserved

    Error Analysis of the Joint Localization and Synchronization of RIS-Assisted mm-Wave MISO-OFDM Under the Effect of Hardware Impairments

    No full text
    © 2020 IEEE.This work investigates the theoretical bounds of the joint localization and synchronization processes in a reconfigurable intelligent surface (RIS)-assisted system. We address the case of millimeter-wave ( mm -Wave) multiple-input single-output (MISO) orthogonal frequency-division multiplexing (OFDM) with non-ideal transceivers. Considering a single antenna mobile station (MS) aims to estimate the parameters of the downlinks from the base station (BS) and the RIS by observing a known sequence received by the MS directly from the BS and indirectly through the RIS. The theoretical bounds of the estimation process are assessed by using the Fisher information matrix (FIM). A transformation matrix is then used to convert the FIM of the downlink channel parameters to the FIM of the MS joint localization and synchronization parameters. Specifically, the transformation matrix is derived based on the geometric relationships that convert the estimated downlink channels' parameters to the position coordinates and clock offset. Next, the Cramer-Rao lower bound (CRLB) matrix of the joint localization and synchronization process is obtained by using the pseudo-inverse of the FIM. Thus, the position error bound (PEB), as well as the synchronization error bound (SEB), are calculated. Computer simulation results are provided to illustrate the adverse effects of the hardware impairments (HWIs) on the accuracy of localization and synchronization. These results are given in proportion to the effective signal-to-noise ratio (SNR), the number of pilot transmissions, and the number of the RIS elements

    Spatial Modulation in the Presence of I/Q Imbalance: Optimal Detector & Performance Analysis

    No full text
    Spatial modulation (SM) is affected by the impacts of in-phase and quadrature-phase imbalance (IQI), which cause degradation of system performance in practical terms. To address this concern, an optimal maximum likelihood detector is proposed for SM-based transmission and the system performance is analyzed by computer simulations and analytical derivations. In addition, this optimal receiver is compared with a non-optimal receiver. Specifically, pairwise and average hit error probabilities are derived for the optimal detector. The results prove that IQI is a critical issue for SM-based transmission and the proposed optimal receiver significantly enhances the SM system performance in the presence of IQI
    corecore