42 research outputs found

    Impact of early enteral versus parenteral nutrition on mortality in patients requiring mechanical ventilation and catecholamines: study protocol for a randomized controlled trial (NUTRIREA-2)

    Get PDF
    BACKGROUND: Nutritional support is crucial to the management of patients receiving invasive mechanical ventilation (IMV) and the most commonly prescribed treatment in intensive care units (ICUs). International guidelines consistently indicate that enteral nutrition (EN) should be preferred over parenteral nutrition (PN) whenever possible and started as early as possible. However, no adequately designed study has evaluated whether a specific nutritional modality is associated with decreased mortality. The primary goal of this trial is to assess the hypothesis that early first-line EN, as compared to early first-line PN, decreases day 28 all-cause mortality in patients receiving IMV and vasoactive drugs for shock. METHODS/DESIGN: The NUTRIREA-2 study is a multicenter, open-label, parallel-group, randomized controlled trial comparing early PN versus early EN in critically ill patients requiring IMV for an expected duration of at least 48 hours, combined with vasoactive drugs, for shock. Patients will be allocated at random to first-line PN for at least 72 hours or to first-line EN. In both groups, nutritional support will be started within 24 hours after IMV initiation. Calorie targets will be 20 to 25 kcal/kg/day during the first week, then 25 to 30 kcal/kg/day thereafter. Patients receiving PN may be switched to EN after at least 72 hours in the event of shock resolution (no vasoactive drugs for 24 consecutive hours and arterial lactic acid level below 2 mmol/L). On day 7, all patients receiving PN and having no contraindications to EN will be switched to EN. In both groups, supplemental PN may be added to EN after day 7 in patients with persistent intolerance to EN and inadequate calorie intake. We plan to recruit 2,854 patients at 44 participating ICUs. DISCUSSION: The NUTRIREA-2 study is the first large randomized controlled trial designed to assess the hypothesis that early EN improves survival compared to early PN in ICU patients. Enrollment started on 22 March 2013 and is expected to end in November 2015. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01802099 (registered 27 February 2013)

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome.: Hypercapnia and right ventricle during severe ARDS

    No full text
    The original publication is available at www.springerlink.comInternational audiencePURPOSE: To evaluate the effects of acute hypercapnia induced by positive end-expiratory pressure (PEEP) variations at constant plateau pressure (P (plat)) in patients with severe acute respiratory distress syndrome (ARDS) on right ventricular (RV) function. METHODS: Prospective observational study in two academic intensive care units enrolling 11 adults with severe ARDS (PaO(2)/FiO(2) 5 cmH(2)O). We compared three ventilatory strategies, each used for 1 h, with P (plat) at 22 (20-25) cmH(2)O: low PEEP (5.4 cmH(2)O) or high PEEP (11.0 cmH(2)O) with compensation of the tidal volume reduction by either a high respiratory rate (high PEEP/high rate) or instrumental dead space decrease (high PEEP/low rate). We assessed RV function (transesophageal echocardiography), alveolar dead space (expired CO(2)), and alveolar recruitment (pressure-volume curves). RESULTS: Compared to low PEEP, PaO(2)/FiO(2) ratio and alveolar recruitment were increased with high PEEP. Alveolar dead space remained unchanged. Both high-PEEP strategies induced higher PaCO(2) levels [71 (60-94) and 75 (53-84), vs. 52 (43-68) mmHg] and lower pH values [7.17 (7.12-7.23) and 7.20 (7.16-7.25) vs. 7.30 (7.24-7.35)], as well as RV dilatation, LV deformation and a significant decrease in cardiac index. The decrease in stroke index tended to be negatively correlated to the increase in alveolar recruitment with high PEEP. CONCLUSIONS: Acidosis and hypercapnia induced by tidal volume reduction and increase in PEEP at constant P (plat) were associated with impaired RV function and hemodynamics despite positive effects on oxygenation and alveolar recruitment ( ClinicalTrials.gov #NCT00236262)

    Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury.

    No full text
    International audienceA high respiratory rate associated with the use of small tidal volumes, recommended for acute lung injury (ALI), shortens time for gas diffusion in the alveoli. This may decrease CO(2) elimination. We hypothesized that a postinspiratory pause could enhance CO(2) elimination and reduce Pa(CO(2)) by reducing dead space in ALI. In 15 mechanically ventilated patients with ALI and hypercapnia, a 20% postinspiratory pause (Tp20) was applied during a period of 30 min between two ventilation periods without postinspiratory pause (Tp0). Other parameters were kept unchanged. The single breath test for CO(2) was recorded every 5 min to measure tidal CO(2) elimination (VtCO(2)), airway dead space (V(Daw)), and slope of the alveolar plateau. Pa(O(2)), Pa(CO(2)), and physiological and alveolar dead space (V(Dphys), V(Dalv)) were determined at the end of each 30-min period. The postinspiratory pause, 0.7 +/- 0.2 s, induced on average <0.5 cmH(2)O of intrinsic positive end-expiratory pressure (PEEP). During Tp20, VtCO(2) increased immediately by 28 +/- 10% (14 +/- 5 ml per breath compared with 11 +/- 4 for Tp0) and then decreased without reaching the initial value within 30 min. The addition of a postinspiratory pause significantly decreased V(Daw) by 14% and V(Dphys) by 11% with no change in V(Dalv). During Tp20, the slope of the alveolar plateau initially fell to 65 +/- 10% of baseline value and continued to decrease. Tp20 induced a 10 +/- 3% decrease in Pa(CO(2)) at 30 min (from 55 +/- 10 to 49 +/- 9 mmHg, P < 0.001) with no significant variation in Pa(O(2)). Postinspiratory pause has a significant influence on CO(2) elimination when small tidal volumes are used during mechanical ventilation for ALI

    First use of imlifidase desensitization in a highly sensitized lung transplant candidate: a case report

    No full text
    International audienceLung transplant candidates who are highly sensitized against human leucocyte antigen present an ongoing challenge with regards to finding immunologically acceptable donors. Desensitization strategies aimed at reducing preformed donor-specific antibodies have a number of limitations. Imlifidase, an IgG-degrading enzyme derived from Streptococcus pyogenes, is a novel agent that has been used to convert positive crossmatches to negative in kidney transplant candidates, allowing transplantation to occur. We present the first case of imlifidase use for antibody depletion in a highly sensitized lung transplant candidate who went on to undergo a successful bilateral lung transplant

    Characteristics of Donor-Specific Antibodies Associated With Antibody-Mediated Rejection in Lung Transplantation

    No full text
    Although donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) are frequently found in recipients after lung transplantation (LT), the characteristics of DSA which influence antibody-mediated rejection (AMR) in LT are not fully defined. We retrospectively analyzed 206 consecutive LT patients of our center (2010–2013). DSAs were detected by using luminex single antigen beads assay and mean fluorescence intensity was assessed. Within the study population, 105 patients had positive DSA. Patients with and without AMR (AMRPos, n = 22, and AMRNeg, n = 83, respectively) were compared. AMRPos patients had significantly greater frequencies of anti-HLA DQ DSA (DQ DSA) than AMRNeg patients (95 vs 58%, respectively, p &lt; 0.0001). Compared to AMRNeg patients, AMRPos patients had higher DQ DSA sum MFI [7,332 (2,067–10,213) vs 681 (0–1,887), p &lt; 0.0001]. DQ DSA when associated with AMR, had more frequent graft loss and chronic lung allograft dysfunction (CLAD). These data suggest (i) that DSA characteristics clearly differ between AMRPos and AMRNeg patients and (ii) the deleterious impact of DQ DSA on clinical outcome
    corecore